Theoretical study on multichannel breakup reactions

^{1,2}Shin Watanabe, ^{3,4}Kazuyuki Ogata, ⁵Takuma Matsumoto

¹NIT, Gifu College, ²RIKEN, ³RCNP, Osaka Univ., ⁴Osaka City Univ. & NITEP, ⁵Kyushu Univ.

Key words

- Multichannel breakup reactions
- Continuum states (resonance, non-resonance)
- Discretized continuum states

2021/06/24 Reaction Seminar 2021 (Zoom)

CDCC: Continuum-Discretized Coupled-Channels

- ✓ CDCC is a fully quantum mechanical method for treating projectile-BU effects.
- ✓ CDCC was born as a theory for *d*-scattering \Rightarrow 3-body CDCC

Three-body CDCC has been widely applied and successful in describing many kinds of three-body reactions.

BU effects in elastic scattering

M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, and M. Kawai, Prog. Theor. Phys. Suppl. No. 89 (1986), 32.

Development of CDCC

Three-body CDCC (1980s-)

Four-body CDCC (2004-)

T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S. Chiba, and M. Yahiro, Phys. Rev. C 70, 061601(R) (2004).

I. J. Thompson, F. M. Nunes, and B. V. Danilin, Comput. Phys. Commun. 161, 87 (2004).

M. Rodríguez-Gallardo, J. M. Arias, J. Gómez-Camacho, A. M. Moro, I. J. Thompson, and J. A. Tostevin, Phys. Rev. C 80, 051601(R) (2009).

T. Matsumoto, K. Kat⁻o, and M. Yahiro, Phys. Rev. C 82, 051602(R) (2010).

P. Descouvemont, Phys. Rev. C 97, 064607 (2018).

Three-body CDCC with core excitation (2014-)

R. de Diego, J. M. Arias, J. A. Lay, and A. M. Moro, Phys. Rev. C 89, 064609 (2014).
J. A. Lay, R. de Diego, R. Crespo, A. M. Moro, J.M. Arias, and R. C. Johnson, Phys. Rev. C 94, 021602(R) (2016).
R. de Diego, R. Crespo, and A. M. Moro, Phys. Rev. C 95, 044611 (2017).

These methods address breakup reactions including multi-breakup channels.

Multi-channel breakup reactions

Multi-channel breakup reactions

Problem in four-body CDCC

⊗ In four-body CDCC, a BUX is obtained as a mixture of different channels.

e.g.) Discretized BUX for ⁶Li scattering

Background & Purpose

Background

- ✓ If a projectile is a 3-body system (⁶Li=n+p+α etc.), the continuum states are often discretized in reaction calculations.
- ✓ These discretized states (Pseudostates) are obtained as a mixture of many kinds of channels.
- ✓ The discretized BUX thus obtained is also a mixture of many kinds of channels.

Purpose

We propose an approximate way of decomposing discretized BUXs into components of different channels.

Note Discretization is indispensable in CDCC

Model and Analysis

Simplifying the problem

Before going to four-body scattering, we consider three-body scattering with core excitation.

Core-ground channel

Core-excitation R. Crespo, A Deltuva, and A. M. Moro, Phys. Rev. C 83, 044622 (2011).

- Analogy to ⁶Li scattering
 - \rightarrow Mixture of different channels
- Simple 2-body problem
 - → We can easily obtain the exact continuum wave functions.

Exact vs Discretized

Simplifying the

Before going to fourwe consider three-bc

Core-ground channel

Core-excited channel

Core-excitation R. Crespo, A Deltuva, and A. M. Moro, Phys. Rev. C 83, 044622 (2011).

- Analogy to ⁶Li scattering
 → Mixture of different channels
- Simple 2-body problem
 - → We can easily obtain the exact continuum wave functions.

Exact vs Discretized

Model Hamiltonian

$$H_{\text{tot}} = K_{R} + V_{\text{vT}}(R_{\text{vT}}) + V_{\text{cT}}(R_{\text{cT}}, \boldsymbol{\xi}) + h_{\text{P}}$$
$$h_{\text{P}} = K_{r} + V(\boldsymbol{r}, \boldsymbol{\xi}) + h_{\text{c}}(\boldsymbol{\xi})$$

DWBA with core excitation: A. M. Moro and R. Crespo, Phys. Rev. C 85, 054613 (2012). CDCC with core excitation: R. de Diego, J. M. Arias, J. A. Lay, and A. M. Moro, Phys. Rev. C 89, 064609 (2014).

- ✓ Projectile WF is constructed with the Particle Rotor Model
- ✓ Reaction part is solved by the distorted-wave Born Approximation (DWBA)

This model enables us to calculate both the exact (continuous) and the approximate (discretized) T-matrix elements.

Model setting (Hamiltonian)

$$H_{\text{tot}} = K_{R} + V_{\text{vT}}(R_{\text{vT}}) + V_{\text{cT}}(R_{\text{cT}}, \boldsymbol{\xi}) + h_{\text{P}}$$
$$h_{\text{P}} = K_{r} + V(\boldsymbol{r}, \boldsymbol{\xi}) + h_{\text{c}}(\boldsymbol{\xi})$$

B. A. Watson et al., Phys. Rev. 182, 977 (1969).

¹⁰Be core

 $\beta_2 = 0.67, E(2 +) = 3.368 \text{ MeV}$

Model space $\ell = 0 - 3$ I = 0, 2

Discretized and **Exact** continuum states of projectile

- Discretized continuum states (with diagonalization)
 - ✓ Continuum states are automatically discretized
 - \checkmark Specified by the state number $n \rightarrow$ Several channels are mixed

 $\widehat{\Psi}_{^{11}\text{Be}}^{(n)}(r,\xi) = \Phi_0(\xi)\widehat{\psi}_0^{(n)}(r) + \Phi_2(\xi)\widehat{\psi}_2^{(n)}(r)$

- Exact continuum states (with difference method)
- \checkmark ch = { ε , *I*} is specified before solving the scattering problem

$$\Psi_{{}^{11}\text{Be}}^{\text{(ch)}}(r,\xi) = \Phi_0(\xi)\psi_0^{\text{(ch)}}(r) + \Phi_2(\xi)\psi_2^{\text{(ch)}}(r)$$

Boundary condition

$$\Psi_{^{11}\text{Be}}^{(\varepsilon,l=2)}(\boldsymbol{r},\boldsymbol{\xi}) \to \Phi_2 e^{i\boldsymbol{k}'\cdot\boldsymbol{r}} + \Phi_0 f_{02}(\theta) \frac{e^{i\boldsymbol{k}r}}{r} + \Phi_2 f_{22}(\theta) \frac{e^{i\boldsymbol{k}'r}}{r}$$

 $\Psi_{^{11}\text{Be}}^{(\varepsilon,l=0)}(\mathbf{r},\boldsymbol{\xi}) \to \Phi_{0}e^{i\mathbf{k}\cdot\mathbf{r}} + \Phi_{0}f_{00}(\theta)\frac{e^{ikr}}{r} + \Phi_{2}f_{20}(\theta)\frac{e^{ik'r}}{r}$

Discretized and **Exact** *T*-matrix in DWBA

✓ For the present purpose, we take the Distorted Wave Born Approximation (DWBA).

A. M. Moro and R. Crespo, Phys. Rev. C 85, 054613 (2012).

Discretized T-matrix (Approximate) X with diagonalization

 $\widehat{T}_{fi} = \left\langle \chi_{K'}^{(-)}(\boldsymbol{R}) \widehat{\Psi}_{f}(\boldsymbol{r},\boldsymbol{\xi}) \middle| V_{vt}(R_{vt}) + V_{ct}(\boldsymbol{R}_{ct},\boldsymbol{\xi}) \middle| \chi_{K}^{(+)}(\boldsymbol{R}) \Psi_{i}(\boldsymbol{r},\boldsymbol{\xi}) \right\rangle$

compare

 $\checkmark \hat{\sigma}_{\rm BU}^{(f)} \propto \left| \hat{T}_{fi} \right|^2$ is obtained.

Continuum T-matrix (Exact) X with difference method

$$T_{fi}(\varepsilon) = \left\langle \chi_{K'}^{(-)}(\boldsymbol{R}) \Psi_{f[\varepsilon, l=0 \text{ or } 2]}(\boldsymbol{r}, \boldsymbol{\xi}) \right| V_{vt}(R_{vt}) + V_{ct}(\boldsymbol{R}_{ct}, \boldsymbol{\xi}) \left\langle \chi_{K}^{(+)}(\boldsymbol{R}) \Psi_{i}(\boldsymbol{r}, \boldsymbol{\xi}) \right\rangle$$

¹¹Be+*p* at 63.7 MeV/nucl.

 $\checkmark \frac{d\sigma_{\rm BU}^{(I=0)}}{d\varepsilon}, \frac{d\sigma_{\rm BU}^{(I=2)}}{d\varepsilon} \text{ are separately obtained.}$

Result 1: Total BUX

How to separate $\hat{\sigma}_{BU}^{(tot)}$? \rightarrow Probability Separation "P-separation"

Projectile wf.

$$\widehat{\Psi}_{^{11}\text{Be}}^{(n)}(\mathbf{r},\boldsymbol{\xi}) = \Phi_0(\boldsymbol{\xi})\widehat{\psi}_0^{(n)}(\mathbf{r}) + \Phi_2(\boldsymbol{\xi})\widehat{\psi}_2^{(n)}(\mathbf{r})$$

0+ probability

$$P_n^{(0+)} = \int d\boldsymbol{r} \left| \left\langle \Phi_0(\boldsymbol{\xi}) \middle| \widehat{\Psi}_{^{11}\text{Be}}^{(n)}(\boldsymbol{r}, \boldsymbol{\xi}) \right\rangle_{\boldsymbol{\xi}} \right|^2$$

P-separation (Approx.) $\hat{\sigma}_{\rm BU}^{\rm (tot)} = \Sigma_n \hat{\sigma}_n$ $\hat{\sigma}_{\rm BU}^{(0+)} \approx \Sigma_n P_n^{(0+)} \hat{\sigma}_n$ $\hat{\sigma}_{\mathrm{BU}}^{(2+)} \approx \Sigma_n \left(1 - P_n^{(0+)}\right) \hat{\sigma}_n$ $P_n^{(0+)} = 1$ for $\varepsilon_n \le \varepsilon_{\text{th}}$ ¹¹Be is not broken up into n+¹⁰Be(2+) below ε_{th} .

Result 2: Decomposition of discretized BUXs

¹¹Be+*p* at 63.7 MeV/nucl.

- \rightarrow ¹⁰Be(0+)+n+p
- \rightarrow ¹⁰Be(2+)+n+p

© Discretized BUXs ($\hat{\sigma}_{BU}^{(tot)}$) are decomposed into each component ($\hat{\sigma}_{BU}^{(0+)}$, $\hat{\sigma}_{BU}^{(2+)}$) very well.

Validity of P-separation (Systematic analysis)

We perform a systematic analysis to validate the P-separation.

- ✓ The different configurations are prepared by changing V and/or ϵ_2 .
- ✓ The potential is common for the ground and continuum states.

Table: Potential sets and the ground state properties

set	S_n	V_0	$V_{\rm so}$	ϵ_2	$P_{\rm gs}(0)$	$P_{\rm gs}(2)$	
1	0.1	-51.924	-8.5	3.368	0.943	0.057	Weakly-bound gs
2	0.5	-54.45	-8.5	3.368	0.855	0.145	Original (done)
3	0.5	-52.988	-1.0	0.5	0.792	0.208	
4	1.0	-56.475	-8.5	3.368	0.788	0.212	
5	5.0	-67.059	-8.5	3.368	0.577	0.423	
6	5.0	-65.670	-1.0	0.5	0.545	0.455	Tightly-bound gs

Potential: A. Deltuva et al., Phys. Rev. C 94, 044613 (2016)

Result 3: Validity of the P-separation

The P-separation works well regardless of the configurations.

Q. What will happen if the resonance(s) exists above ε_{th} ?

So far

All the resonances appear below $\varepsilon_{\rm th}$.

 \succ The separation is trivial.

From now on

Is the P-separation still valid even if the resonance(s) exists above ε_{th} ?

To construct the resonances above $\varepsilon_{\rm th}$ in the 5/2+ state, we found that the deeper potential is necessary.

Depth : $V_0 = -54.45 \rightarrow -85.791 \text{ MeV}$ Threshold: $\varepsilon_{\text{th}} = 3.368 \rightarrow 0.5 \text{ MeV}$

P-separation with resonances above ε_{th}

Two resonances make the characteristic peaks, respectively.

The P-separation works well
 regardless of the resonance position.

Why P-separation works well?

 $P_n^{(0+)}$ vs $\Gamma_n^{(0+)}$

 $\Gamma_n^{(0+)}$: Proportion of the core-ground

$$T_n^{(0+)} \equiv \int d\varepsilon \left| \left\langle \Psi_{\varepsilon}^{(lj,l=0)}(\boldsymbol{r},\boldsymbol{\xi}) \right| \widehat{\Psi}_{^{11}\text{Be}}^{(n)}(\boldsymbol{r},\boldsymbol{\xi}) \right\rangle \right|^2$$

$$\uparrow \qquad \uparrow$$
Exact continuum state
$$n\text{-th discretized stat}$$

$$(0+) \qquad (2+)$$

Analysis: $P_n^{(0+)}$ vs $\Gamma_n^{(0+)}$

Different cases: $\Gamma_n^{(0+)}$ vs $P_n^{(0+)}$

Short summary

We have proposed an approximate treatment (P-separation) for decomposing discretized BUXs.

S. Watanabe, K. Ogata, and T. Matsumoto, PRC 103, L031601 (2021).

 \checkmark We applied the P-separation to ^{11}Be scattering with core excitation.

- > ¹¹Be+T \rightarrow ¹⁰Be(gs)+n+T and ¹¹Be+T \rightarrow ¹⁰Be(2+)+n+T
- ✓ The P-separation reproduces the exact BUXs well regardless of the configurations and/or the resonance positions of ¹¹Be.
- ✓ We also found that $P_n^{(0+)} \approx \Gamma_n^{(0+)}$ is realized.

Application to four-body scattering

Application to four-body CDCC

We investigate $d\alpha$ - and $np\alpha$ -BUX of ⁶Li scattering (n+p+ α +T).

Low energy: ⁶Li+²⁰⁸Pb at **39** MeV High energy: ⁶Li+²⁰⁸Pb at **210** MeV

Model

- ✓ 1+, 2+, and 3+ states are included
- ✓ Coulomb BU is neglected

Details: S. Watanabe et al., PRC 92, 044611 (2015).

 $d\alpha$ -probability

$$P_n^{(d\alpha)} = \int d\mathbf{r} \left| \left\langle \Phi_d(\mathbf{y}) \left| \widehat{\Psi}_{6_{\text{Li}}}^{(n)}(\mathbf{r}, \mathbf{y}) \right\rangle_{\mathbf{y}} \right|^2$$

Deuteron g.s.↑

↑Three-body pseudostate

dlpha-BUX $\hat{\sigma}_{ m BU}^{(dlpha)}$ and nplpha-BUX $\hat{\sigma}_{ m BU}^{(nplpha)}$

⁶Li+²⁰⁸Pb scattering

	$\hat{\sigma}_{ m BU}^{(m tot)}[m mb]$	$\hat{\sigma}_{\mathrm{BU}}^{(dlpha)}[\mathrm{mb}]$	$\hat{\sigma}_{\mathrm{BU}}^{(np\alpha)}[\mathrm{mb}]$
39 MeV	68.7	45.3	23.4
210 MeV	137	89.9	47.1

$$\hat{\sigma}_{\mathrm{BU}}^{(d\alpha)} \approx 2\hat{\sigma}_{\mathrm{BU}}^{(np\alpha)}$$

Almost comparable

This appears to contradict with the findings in the previous work: "four-body channel coupling is negligible in the elastic scattering" ($^{6}Li+T \leftrightarrow n+p+\alpha+T$) S. Watanabe et al., PRC 92, 044611 (2015).

 $\hat{\sigma}_{\text{BU}}^{(\text{tot})} = \Sigma_n \hat{\sigma}_n$ $\hat{\sigma}_{\text{BU}}^{(d\alpha)} \approx \Sigma_n P_n^{(d\alpha)} \hat{\sigma}_n$ $\hat{\sigma}_{\text{BU}}^{(np\alpha)} \approx \Sigma_n \left(1 - P_n^{(d\alpha)}\right) \hat{\sigma}_n$ $P_n^{(d\alpha)} = 1 \text{ for } \varepsilon_n \le \varepsilon_{\text{th}}^{(np\alpha)}$

Three- and four-body channel-coupling effect on the elastic scattering

S. Watanabe, T. Matsumoto, K. Ogata, and M. Yahiro, PRC 92, 044611 (2015).

Categorize BU states

dα-dominant state |*dα*⟩_i 15 states
 |BU⟩_i with P_i^(dα) > 0.5
 npα-dominant state |*npα*⟩_j 140 states
 |BU⟩_j with P_j^(dα) ≤ 0.5

Note

The number of $np\alpha$ -dominant states is much more than that of $d\alpha$ -dominant states.

We investigate the channel-coupling effects by switching on and off

- three-body channel (⁶Li+T \leftrightarrow n+p+ α +T)
- four-body channel (⁶Li+T \leftrightarrow n+p+ α +T)

Four-body channel-coupling effect

Three-body channel-coupling effect

Channel-coupling strength

What is happening in ⁶Li scattering?

⁶Li may be broken up into three particles after breaking up into two clusters. (⁶Li \rightarrow d+ α \rightarrow n+p+ α)

Summary

We have proposed an approximate treatment (P-separation) for decomposing discretized BUXs.

S. Watanabe, K. Ogata, and T. Matsumoto, PRC 103, L031601 (2021).

 \checkmark We applied the P-separation to ^{11}Be scattering with core excitation.

> ¹¹Be+T \rightarrow ¹⁰Be(gs)+n+T \rightarrow ¹⁰Be(2+)+n+T

- ✓ The P-separation reproduces the exact BUXs well regardless of the configurations and/or the resonance positions of ¹¹Be.
- ✓ We also found that $P_n^{(0+)} \approx \Gamma_n^{(0+)}$ is realized.

This method can be an alternative approach for decomposing discretized BUXs into components in four- or five-body scattering where the strict decomposition is hard to perform.