Theoretical study on multichannel breakup reactions

${ }^{1,2}$ Shin Watanabe, ${ }^{3,4}$ Kazuyuki Ogata, ${ }^{5}$ Takuma Matsumoto

${ }^{1}$ NIT, Gifu College, ${ }^{2}$ RIKEN, ${ }^{3}$ RCNP, Osaka Univ., ${ }^{4}$ Osaka City Univ. \& NITEP, ${ }^{5}$ Kyushu Univ.

Key words

- Continuum states (resonance, non-resonance)
- Discretized continuum states

CDCC: Continuum-Discretized Coupled-Channels

\checkmark CDCC is a fully quantum mechanical method for treating projectile-BU effects.
\checkmark CDCC was born as a theory for d-scattering $\quad \Rightarrow$ 3-body CDCC

Three-body CDCC has been widely applied and successful in describing many kinds of three-body reactions.

Development of CDCC

Three-body CDCC (1980s-)

Four-body CDCC (2004-)

T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura, S. Chiba, and M. Yahiro, Phys. Rev. C 70, 061601(R) (2004).
I. J. Thompson, F. M. Nunes, and B. V. Danilin, Comput. Phys. Commun. 161, 87 (2004).
M. Rodríguez-Gallardo, J. M. Arias, J. Gómez-Camacho, A. M. Moro, I. J. Thompson, and J. A. Tostevin, Phys. Rev. C 80, 051601(R) (2009).
T. Matsumoto, K. Kat ${ }^{-}$o, and M. Yahiro, Phys. Rev. C 82, 051602(R) (2010).
P. Descouvemont, Phys. Rev. C 97, 064607 (2018).

Three-body CDCC with core excitation (2014-)

R. de Diego, J. M. Arias, J. A. Lay, and A. M. Moro, Phys. Rev. C 89, 064609 (2014).
J. A. Lay, R. de Diego, R. Crespo, A. M. Moro, J.M. Arias, and R. C. Johnson, Phys. Rev. C 94, 021602(R) (2016). R. de Diego, R. Crespo, and A. M. Moro, Phys. Rev. C 95, 044611 (2017).

These methods address breakup reactions including multi-breakup channels.

Multi-channel breakup reactions

3-body BU reaction 3-body CDCC: M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, and M. Kawai, Prog. Theor. Phys. Suppl. No. 89 (1986), 32.

4-body BU reaction

4-body CDCC: T. Matsumoto et al., PRC 70, 061601(R) (2004).

Multi-channel breakup reactions

3
Dynamics of 4-body BU reaction is richer than that of 3 -body BU reaction and its elucidation is important.
Each breakup cross section (BUX) provides useful information.

4-body BU reaction 4-body CDCC: T. Matsumoto et al,, PRC 70, 061601(R) (2004).

Problem in four-body CDCC

© In four-body CDCC, a BUX is obtained as a mixture of different channels.

e.g.) Discretized BUX for ${ }^{6}$ Li scattering

We can decompose the discretized BUXs by taking an overlap between the discretized state and the exact continuum state.

3-body CDCC smoothing:
T. Matsumoto et al., Phys. Rev. C 68, 064607 (2003)
\rightarrow Can we decompose BUXs easily?

Background \& Purpose

Background

\checkmark If a projectile is a 3-body system (${ }^{6} \mathrm{Li}=\mathrm{n}+\mathrm{p}+\alpha$ etc.) , the continuum states are often discretized in reaction calculations.

Note

Discretization is indispensable in CDCC
\checkmark These discretized states (Pseudostates) are obtained as a mixture of many kinds of channels.
\checkmark The discretized BUX thus obtained is also a mixture of many kinds of channels.

Purpose

We propose an approximate way of decomposing discretized BUXs into components of different channels.

Model and Analysis

Simplifying the problem

Before going to four-body scattering, we consider three-body scattering with core excitation.

Core-excitation
R. Crespo, A Deltuva, and A. M. Moro, Phys. Rev. C 83, 044622 (2011).

Core-ground channel

- Analogy to ${ }^{6}$ Li scattering
\rightarrow Mixture of different channels
- Simple 2-body problem
\rightarrow We can easily obtain the exact continuum wave functions.

Exact vs Discretized

Simplifying thd

Before going to fourwe consider three-bd
$n p \alpha$ channel

Core-excitation R. Crespo, A Deltuva, and A. M. Moro, Phys. Rev. C 83, 044622 (2011).

Core-ground channel

Core-excited channel

- Analogy to ${ }^{6}$ Li scattering
\rightarrow Mixture of different channels
- Simple 2-body problem
\rightarrow We can easily obtain the exact continuum wave functions.

Exact vs Discretized

Model Hamiltonian

$$
\begin{aligned}
H_{\mathrm{tot}} & =K_{\boldsymbol{R}}+V_{\mathrm{vT}}\left(R_{\mathrm{vT}}\right)+V_{\mathrm{cT}}\left(\boldsymbol{R}_{\mathrm{cT}}, \xi\right)+h_{\mathrm{P}} \\
h_{\mathrm{P}} & =K_{r}+V(\boldsymbol{r}, \xi)+h_{\mathrm{c}}(\xi)
\end{aligned}
$$

DWBA with core excitation: A. M. Moro and R. Crespo, Phys. Rev. C 85, 054613 (2012).
CDCC with core excitation: R. de Diego, J. M. Arias, J. A. Lay, and A. M. Moro, Phys. Rev. C 89, 064609 (2014).
\checkmark Projectile WF is constructed with the Particle Rotor Model
\checkmark Reaction part is solved by the distorted-wave Born Approximation (DWBA)

This model enables us to calculate both the exact (continuous) and the approximate (discretized) T-matrix elements.

Model setting (Hamiltonian)

$$
\begin{aligned}
H_{\mathrm{tot}} & =K_{\boldsymbol{R}}+V_{\mathrm{vT}}\left(R_{\mathrm{vT}}\right)+V_{\mathrm{cT}}\left(\boldsymbol{R}_{\mathrm{cT}}, \xi\right)+h_{\mathrm{P}} \\
h_{\mathrm{P}} & =K_{\boldsymbol{r}}+V(\boldsymbol{r}, \xi)+h_{\mathrm{c}}(\xi)
\end{aligned}
$$

${ }^{11} \mathrm{Be}+p$ at $63.7 \mathrm{MeV} /$ nucl.

$$
\text { Gaussian: } V(r)=-45 e^{-(r / 1.484)^{2}}
$$

A. M. Moro and R. Crespo,

$$
\text { Phys. Rev. C 85, } 054613 \text { (2012). }
$$

F.M. Nunes et al., NPA609 43 (1996).

$$
\begin{aligned}
V_{\mathrm{WS}} & =-54.45 \mathrm{MeV} \\
V_{\mathrm{SO}} & =-8.50 \mathrm{MeV} \\
R & =2.483 \mathrm{fm} \\
a & =0.65 \mathrm{fm}
\end{aligned}
$$

${ }^{10}$ Be core
$\quad \beta_{2}=0.67, E(2+)=3.368 \mathrm{MeV}$
B. A. Watson et al., Phys. Rev. 182, 977 (1969).

$$
\beta_{2}=0.67, E(2+)=3.368 \mathrm{MeV}
$$

Model space

$$
\ell=0-3 \quad I=0,2
$$

Discretized and Exact continuum states of projectile

- Discretized continuum states (with diagonalization)

Gaussian Expansion Method (GEM)
E. Hiyama, Y. Kino, M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003).
\checkmark Continuum states are automatically discretized
\checkmark Specified by the state number $n \rightarrow$ Several channels are mixed

$$
\widehat{\Psi}_{11_{\mathrm{Be}}}^{(n)}(\boldsymbol{r}, \xi)=\Phi_{0}(\xi) \hat{\psi}_{0}^{(n)}(\boldsymbol{r})+\Phi_{2}(\xi) \hat{\psi}_{2}^{(n)}(\boldsymbol{r})
$$

- Exact continuum states (with difference method)
$\checkmark \mathrm{ch}=\{\varepsilon, I\}$ is specified before solving the scattering problem

$$
\begin{aligned}
\Psi_{11}^{(\mathrm{ch})}(\boldsymbol{B e}, \xi) & =\Phi_{0}(\xi) \psi_{0}^{(\mathrm{ch})}(\boldsymbol{r})+\Phi_{2}(\xi) \psi_{2}^{(\mathrm{ch})}(\boldsymbol{r}) \\
\Psi_{11}^{(\varepsilon, I=0)}(\boldsymbol{r}, \xi) & \rightarrow \Phi_{0} e^{i \boldsymbol{k} \cdot \boldsymbol{r}}+\Phi_{0} f_{00}(\theta) \frac{e^{i k r}}{r}+\Phi_{2} f_{20}(\theta) \frac{e^{i k^{\prime} r}}{r} \\
\Psi_{11 \mathrm{Be}}^{(\varepsilon, I=2)}(\boldsymbol{r}, \xi) & \rightarrow \Phi_{2} e^{i \boldsymbol{k}^{\prime} \cdot \boldsymbol{r}}+\Phi_{0} f_{02}(\theta) \frac{e^{i k r}}{r}+\Phi_{2} f_{22}(\theta) \frac{e^{i k^{\prime} r}}{r}
\end{aligned}
$$

Boundary condition

Energy spectrum of $n+{ }^{10} \mathrm{Be}$

Discretized and Exact T-matrix in DWBA

\checkmark For the present purpose, we take the Distorted Wave Born Approximation (DWBA).
A. M. Moro and R. Crespo, Phys. Rev. C 85, 054613 (2012).

Discretized T-matrix (Approximate) ※ with diagonalization

$$
\hat{T}_{f i}=\left\langle\chi _ { \boldsymbol { K } ^ { \prime } } ^ { (-) } (\boldsymbol { R }) \longdiv { \widehat { \Psi } _ { f } (\boldsymbol { r } , \xi) | }\right| V_{v t}\left(R_{v t}\right)+V_{c t}\left(\boldsymbol{R}_{c t}, \xi\right)\left|\chi_{\boldsymbol{K}}^{(+)}(\boldsymbol{R}) \Psi_{i}(\boldsymbol{r}, \xi)\right\rangle
$$

$\checkmark \hat{\sigma}_{\mathrm{BU}}^{(f)} \propto\left|\hat{T}_{f i}\right|^{2}$ is obtained. compare
Continuum T-matrix (Exact) ※ with difference nethod

$$
\begin{aligned}
& T_{f i}(\varepsilon)=\left\langle\chi_{\boldsymbol{K}^{\prime}}^{(-)}(\boldsymbol{R}) \Psi_{f[\varepsilon, I=0 \text { or } 2]}(\boldsymbol{r}, \xi)\right| V_{v t}\left(R_{v t}\right)+V_{c t}\left(\boldsymbol{R}_{c t}, \xi\right)\left|\chi_{\boldsymbol{K}}^{(+)}(\boldsymbol{R}) \Psi_{i}(\boldsymbol{r}, \xi)\right\rangle \\
& \quad \checkmark \frac{d \sigma_{\mathrm{BU}}^{(I=0)}}{d \varepsilon}, \frac{d \sigma_{\mathrm{BU}}^{(I=2)}}{d \varepsilon} \text { are separately obtained. }
\end{aligned}
$$

${ }^{11} \mathrm{Be}+p$ at $63.7 \mathrm{MeV} /$ nucl.

Result 1: Total BUX

$$
\hat{\sigma}_{\mathrm{BU}}^{(\mathrm{tot})}=\sum_{n} \hat{\sigma}_{n}=54.8 \mathrm{mb} \quad \sigma_{\mathrm{BU}}^{(\mathrm{tot})}=\int \frac{d \sigma}{d \varepsilon} d \varepsilon=54.8 \mathrm{mb}
$$

Components? $\sigma_{\mathrm{BU}}^{(0+)} \& \sigma_{\mathrm{BU}}^{(2+)}$
As for $\hat{\sigma}_{\mathrm{BU}}^{(\text {tot })}$, we can obtain the same result. $\left(\hat{\sigma}_{\mathrm{BU}}^{(\mathrm{tot})}=\sigma_{\mathrm{BU}}^{(\mathrm{tot})}\right)$

How to separate $\hat{\sigma}_{\mathrm{BU}}^{(\text {tot })} ? \rightarrow$ Probability Separation "P-separation"

Projectile wf.

$$
\widehat{\Psi}_{11}^{(n)}(\boldsymbol{B e}, \xi)=\Phi_{0}(\xi) \hat{\psi}_{0}^{(n)}(\boldsymbol{r})+\Phi_{2}(\xi) \hat{\psi}_{2}^{(n)}(\boldsymbol{r})
$$

0+ probability $\quad P_{n}^{(0+)}=\int d r\left|\left\langle\Phi_{0}(\xi) \mid \Psi_{1_{11 \mathrm{Be}}}^{(n)}(r, \xi)\right\rangle_{\xi}\right|^{2}$
${ }^{11} \mathrm{Be}$

- P-separation (Approx.)
$\hat{\sigma}_{\mathrm{BU}}^{(\mathrm{tot})}=\Sigma_{n} \hat{\sigma}_{n}$
$\hat{\sigma}_{\mathrm{BU}}^{(0+)} \approx \sum_{n} P_{n}^{(0+)} \hat{\sigma}_{n}$
$\hat{\sigma}_{\mathrm{BU}}^{(2+)} \approx \Sigma_{n}\left(1-P_{n}^{(0+)}\right) \hat{\sigma}_{n}$
$P_{n}^{(0+)}=1$ for $\varepsilon_{n} \leq \varepsilon_{\text {th }}$
${ }^{11} \mathrm{Be}$ is not broken up into $\mathrm{n}+{ }^{10} \mathrm{Be}(2+)$ below $\varepsilon_{\text {th }}$.

Result 2: Decomposition of discretized BUXs

$$
\begin{array}{ll}
\hat{\sigma}_{\mathrm{BU}}^{(\mathrm{tot})}=\Sigma_{n} \hat{\sigma}_{n} & \left(P_{n}^{(0+)}=1 \text { for } \varepsilon_{n} \leq \varepsilon_{\mathrm{th}}\right) \\
\hat{\sigma}_{\mathrm{BU}}^{(0+)} \approx \Sigma_{n} P_{n}^{(0+)} \hat{\sigma}_{n} & \hat{\sigma}_{\mathrm{BU}}^{(2+)} \approx \Sigma_{n} P_{n}^{(2+)} \hat{\sigma}_{n}
\end{array}
$$

1 Almost identical

$$
\begin{aligned}
& --- \text { Exact solution }---------- \\
& \sigma_{\mathrm{BU}}^{(\mathrm{tot})}=\int \frac{d \sigma}{d \varepsilon} d \varepsilon \\
& \sigma_{\mathrm{BU}}^{(0+)}=\int \frac{d \sigma^{(0+)}}{d \varepsilon} d \varepsilon \quad \sigma_{\mathrm{BU}}^{(2+)}=\int \frac{d \sigma^{(2+)}}{d \varepsilon} d \varepsilon
\end{aligned}
$$

DWBA analysis

${ }^{11} \mathrm{Be}+p$ at $63.7 \mathrm{MeV} / \mathrm{nucl}$.
$\rightarrow{ }^{10} \mathrm{Be}(0+)+n+p$
$\rightarrow{ }^{10} \mathrm{Be}(2+)+n+p$
© Discretized BUXs ($\hat{\sigma}_{\mathrm{BU}}^{(\mathrm{tot})}$) are decomposed into each component ($\left.\hat{\sigma}_{\mathrm{BU}}^{(0+)}, \hat{\sigma}_{\mathrm{BU}}^{(2+)}\right)$ very well.

Validity of P-separation (Systematic analysis)

We perform a systematic analysis to validate the P -separation.
\checkmark The different configurations are prepared by changing V and/or ϵ_{2}.
\checkmark The potential is common for the ground and continuum states.
Table: Potential sets and the ground state properties

set	S_{n}	V_{0}	$V_{\text {so }}$	ϵ_{2}	$P_{\text {gs }}(0)$	$P_{\mathrm{gs}}(2)$	Weakly-bound gs
1	0.1	-51.924	-8.5	3.368	0.943	0.057	
2	0.5	-54.45	-8.5	3.368	0.855	0.145	Original (done)
3	0.5	-52.988	-1.0	0.5	0.792	0.208	
4	1.0	-56.475	-8.5	3.368	0.788	0.212	
5	5.0	-67.059	-8.5	3.368	0.577	0.423	
6	5.0	-65.670	-1.0	0.5	0.545	0.455	Tightly-bound gs

Result 3 : Validity of the P-separation

Tightly binding \& Small $\varepsilon_{\text {th }}$

The P-separation works well regardless of the configurations.

Q. What will happen if the resonance(s) exists above $\varepsilon_{\text {th }}$?

So far

All the resonances appear below $\varepsilon_{\text {th }}$.
$>$ The separation is trivial.

From now on

Is the P-separation still valid even if the resonance(s) exists above $\varepsilon_{\text {th }}$?

> To construct the resonances above $\varepsilon_{\text {th }}$ in the $5 / 2+$ state, we found that the deeper potential is necessary.

Depth $: V_{0}=-54.45 \rightarrow-85.791 \mathrm{MeV}$ Threshold: $\varepsilon_{\text {th }}=3.368 \rightarrow \quad 0.5 \mathrm{MeV}$

P-separation with resonances above $\varepsilon_{\text {th }}$

\checkmark Two resonances make the characteristic peaks, respectively.

() The P-separation works well regardless of the resonance position.

Why P-separation works well? $\quad P_{n}^{(0+)}$
$\boldsymbol{P}_{n}^{(0+)}:$ Proportion of the core-ground component

$$
P_{n}^{(0+)} \equiv \int d \boldsymbol{r}\left|\left\langle\Phi_{0}(\xi) \mid \widehat{\Psi}_{11 \mathrm{Be}}^{(n)}(\boldsymbol{r}, \xi)\right\rangle_{\xi}\right|^{2}
$$

Core-ground state n-th discretized state

$$
P_{n}^{(0+)}+P_{n}^{(2+)}=1
$$

$\Gamma_{n}^{(0+)}$:Proportion of the core-ground channel

$$
\Gamma_{n}^{(0+)} \equiv \int d \varepsilon\left|\left\langle\underset{\uparrow}{\Psi_{\varepsilon}^{(l j, I=0)}(\boldsymbol{r}, \xi) \mid} \underset{\uparrow}{{\underset{\Psi}{11}}_{(n)}^{\mathrm{Be}^{2}}} \underset{\uparrow}{ }(\boldsymbol{r}, \xi)\right\rangle\right|^{2}
$$

Exact continuum state n-th discretized state

$$
\Gamma_{n}^{(0+)}+\Gamma_{n}^{(2+)}=1
$$

Analysis: $P_{n}^{(0+)}$ vs $\Gamma_{n}^{(0+)}$

Different cases : $\Gamma_{n}^{(0+)}$ vs $P_{n}^{(0+)}$

Set2 (original)
Set4 (deeper V)
Set7 (deeper V \& smaller $\varepsilon_{\text {th }}$)

$P_{n}^{(0+)} \approx \Gamma_{n}^{(0+)}\left(\varepsilon_{n}>\varepsilon_{\mathrm{th}}\right)$ is realized regardless of

- Potential parameters
- Deformation parameter β_{2}
- Basis parameters

Short summary

We have proposed an approximate treatment (P-separation) for decomposing discretized BUXs.

S. Watanabe, K. Ogata, and T. Matsumoto, PRC 103, L031601 (2021).
\checkmark We applied the P -separation to ${ }^{11} \mathrm{Be}$ scattering with core excitation.

$$
>{ }^{11} \mathrm{Be}+\mathrm{T} \rightarrow \rightarrow^{10} \mathrm{Be}(\mathrm{gs})+\mathrm{n}+\mathrm{T} \text { and }{ }^{11} \mathrm{Be}+\mathrm{T} \rightarrow{ }^{10} \mathrm{Be}(2+)+\mathrm{n}+\mathrm{T}
$$

\checkmark The P-separation reproduces the exact BUXs well regardless of the configurations and/or the resonance positions of ${ }^{11} \mathrm{Be}$.
\checkmark We also found that $P_{n}^{(0+)} \approx \Gamma_{n}^{(0+)}$ is realized.

Application to

four-body scattering

4-body BU reaction 4-body CDCC: T. Matsumoto et al,, PRC 70, 061601(R) (2004).

Application to four-body CDCC

> We investigate d $\alpha-$ and np α-BUX of ${ }^{6} \mathrm{Li}$ scattering $(n+p+\alpha+T)$.

Low energy: ${ }^{6} \mathrm{Li}+{ }^{208} \mathrm{~Pb}$ at 39 MeV High energy: ${ }^{6} \mathrm{Li}+{ }^{208} \mathrm{~Pb}$ at 210 MeV

Model

$\checkmark 1+, 2+$, and $3+$ states are included
\checkmark Coulomb BU is neglected
Details: S. Watanabe et al., PRC 92, 044611 (2015).

d α-probability

$$
P_{n}^{(d \alpha)}=\int d \boldsymbol{r}\left|\left\langle\Phi_{d}(\boldsymbol{y}) \mid \widehat{\Psi}_{\sigma_{\mathrm{Li}}}^{(n)}(\boldsymbol{r}, \boldsymbol{y})\right\rangle_{\boldsymbol{y}}\right|^{2}
$$

Deuteron g.s. \uparrow个Three-body pseudostate

$d \alpha-B \cup X \hat{\sigma}^{(d \alpha)}$
 BU

${ }^{6} \mathrm{Li}+{ }^{208} \mathrm{~Pb}$ scattering

	$\hat{O}_{\text {BU }}^{(\text {(tot) }}$ [mb]	$\hat{O}_{\text {BU }}($ da) $[\mathrm{mb}]$	$\hat{\sigma}_{\text {BU }}{ }^{(n p \alpha)}$ [mb]
39 MeV	68.7	45.3	23.4
210 MeV	137	89.9	47.1
$\hat{\sigma}_{\mathrm{BU}}^{(d \alpha)} \approx 2 \hat{\sigma}_{\mathrm{BU}}^{(n p \alpha)}$			
Almost comparable			

- P-separation (Approx.)

$$
\hat{\sigma}_{\mathrm{BU}}^{(\mathrm{tot})}=\Sigma_{n} \hat{\sigma}_{n}
$$

$$
\hat{\sigma}_{\mathrm{BU}}^{(d \alpha)} \approx \Sigma_{n} P_{n}^{(d \alpha)} \hat{\sigma}_{n}
$$

$$
\hat{\sigma}_{\mathrm{BU}}^{(n p \alpha)} \approx \Sigma_{n}\left(1-P_{n}^{(d \alpha)}\right) \hat{\sigma}_{n}
$$

$$
P_{n}^{(d \alpha)}=1 \text { for } \varepsilon_{n} \leq \varepsilon_{\mathrm{th}}^{(n p \alpha)}
$$

This appears to contradict with the findings in the previous work: "four-body channel coupling is negligible in the elastic scattering"

$$
\left({ }^{6} \mathrm{Li}+\mathrm{T} \leftrightarrow \mathrm{n}+\mathrm{p}+\alpha+\mathrm{T}\right)
$$

S. Watanabe et al., PRC 92, 044611 (2015).

Three- and four-body channel-coupling effect on the elastic scattering

S. Watanabe, T. Matsumoto, K. Ogata, and M. Yahiro, PRC 92, 044611 (2015).

■ Categorize BU states
$>d \alpha$-dominant state $\quad|d \alpha\rangle_{i} \quad 15$ states
$|\mathrm{BU}\rangle_{i}$ with $P_{i}^{(d \alpha)}>0.5$
$>n p \alpha$-dominant state $\quad|n p \alpha\rangle_{j} 140$ states
$|\mathrm{BU}\rangle_{j}$ with $P_{j}^{(d \alpha)} \leq 0.5$
Note
The number of np α-dominant states is much more than that of d α-dominant states.

We investigate the channel-coupling effects by switching on and off

- three-body channel ($\left.{ }^{6} \mathrm{Li}+\mathrm{T} \leftrightarrow \mathrm{n}+\mathrm{p}+\alpha+\mathrm{T}\right)$
- four-body channel ($\left.{ }^{6} \mathrm{Li}+\mathrm{T} \leftrightarrow \mathrm{n}+\mathrm{p}+\alpha+\mathrm{T}\right)$

Four-body channel-coupling effect

Channel coupling

Three-body channel-coupling effect

Channel-coupling strength

What is happening in ${ }^{6}$ Li scattering?
${ }^{6}$ Li may be broken up into three particles after breaking up into two clusters.

$$
\left({ }^{6} L i \rightarrow d+\alpha \rightarrow n+p+\alpha\right)
$$

Summary

We have proposed an approximate treatment (P -separation) for decomposing discretized BUXs.
S. Watanabe, K. Ogata, and T. Matsumoto, PRC 103, L031601 (2021).
\checkmark We applied the P -separation to ${ }^{11} \mathrm{Be}$ scattering with core excitation.

$$
>{ }^{11} \mathrm{Be}+\mathrm{T} \rightarrow{ }^{10} \mathrm{Be}(\mathrm{gs})+\mathrm{n}+\mathrm{T} \rightarrow{ }^{10} \mathrm{Be}(2+)+\mathrm{n}+\mathrm{T}
$$

\checkmark The P-separation reproduces the exact BUXs well regardless of the configurations and/or the resonance positions of ${ }^{11} \mathrm{Be}$.
\checkmark We also found that $P_{n}^{(0+)} \approx \Gamma_{n}^{(0+)}$ is realized.
This method can be an alternative approach for decomposing discretized BUXs into components in four- or five-body scattering where the strict decomposition is hard to perform.

