```
https://reactionseminar2021.github.io/schedule/
```


Potential roots of deep sub-barrier heavy-ion fusion hindrance phenomenon within the sudden approximation approach

P. W. Wen,,1,2 C. J. Lin, ${ }^{2,3, *}$ R. G. Nazmitdinov, ${ }^{1,4, \dagger}$ S. I. Vinitsky, ${ }^{1,5, \ddagger}$ O.
Chuluunbaatar, ${ }^{1,6}$ A. A. Gusev, ${ }^{1}$ A. K. Nasirov, ${ }^{1,7}$ H. M. Jia, ${ }^{2}$ and A. Góźdź ${ }^{8}$
${ }^{1}$ Joint Institute for Nuclear Research, 141980 Dubna, Russia
${ }^{2}$ China Institute of Atomic Energy, 102413 Beijing, China
${ }^{3}$ Department of Physics, Guangxi Normal University, 541004 Guilin, China
${ }^{4}$ Dubna State University, 141982 Dubna, Russia
${ }^{5}$ Peoples' Friendship University of Russia (RUDN University), 117198 Moscow, Russia
${ }^{6}$ Institute of Mathematics and Digital Technology,
Mongolian Academy of Sciences, 13330 Ulaanbaatar, Mongolia
${ }^{7}$ Institute of Nuclear Physics, Ulugbek, 100214, Tashkent, Uzbekistan
${ }^{8}$ Institute of Physics, University of M. Curie-Sktodowska, 520031 Lublin, Poland

Reaction Seminar, May 13, 2021

Contents

(1) Introduction on deep sub-barrier fusion hindrance
(2) The modified CC theoretical framework
(3) Results and discussions
(4) Summary and perspective

Contents

(1) Introduction on deep sub-barrier fusion hindrance

2 The modified CC theoretical framework
(3) Results and discussions
(4) Summary and perspective

Time independent sub-barrier quantum tunneling

There are generally two ways to get the tunneling probability:

- Semi-classical approaches: WKB et al.

$$
P_{l}^{\mathrm{WKB}}(E)=\exp \left[-2 \int_{r_{\min }}^{r_{\max }} \sqrt{2 \mu\left[V_{l}(r)-E\right] / \hbar^{2}} d r\right],
$$

- Schrödinger equation under certain boundary conditions.

$$
\left[-\frac{\hbar^{2} d^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{N}^{(0)}(r)+\frac{Z_{P} Z_{r} e^{2}}{r}-E\right] \psi(r)=0
$$

Physical idea of coupled-channels tunneling

Taking two energy levels as an example here

$$
\left[\frac{\hbar^{2}}{2 \mu} \nabla^{2}+V_{l}(r)+\left(\begin{array}{cc}
0 & F(r) \\
F(r) & \epsilon_{1}
\end{array}\right)\right]\binom{u_{0}(r)}{u_{1}(r)}=E\binom{u_{0}(r)}{u_{1}(r)}
$$

$F(r)=V_{01}(r)=V_{10}(r)$
The eigen-frequency:
$\lambda_{ \pm}(r)=\left[\epsilon_{1} \pm \sqrt{\epsilon_{1}^{2}+4 F(r)^{2}}\right] / 2$
If $\epsilon_{1}=0$, then
$\lambda_{ \pm}(r)= \pm F(r)$,
and

$$
\begin{aligned}
P_{l}(E)= & \frac{1}{2}\left\{P_{l}^{0}\left[E ; V_{l}(r)+F(r)\right]\right. \\
& \left.+P_{l}^{0}\left[E ; V_{l}(r)-F(r)\right]\right\} .
\end{aligned}
$$

C. J. Lin, Heavy-ion nuclear reactions, (2015)
P. Fröbrich, Theory of Nuclear Reactions, (1996)

Multi-channels problem for heavy-ion reactions

Taking into full order coupling in $V_{n m}$ is important

$$
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{N}^{(0)}(r)+\frac{Z_{p} Z_{T} e^{2}}{r}+\epsilon_{n}-E\right] \psi_{n}(r)+\sum_{m} V_{n m}(r) \psi_{m}(r)=0
$$

In CCFULL model, the full order couplings are considered.
H. Hagino et al, PRC. 55, 276 (1997).
M. Dasgupta et al, Annu. Rev. Nucl. Part. S 48, 401 (1998);
H. Hagino et al, Comput. Phys. Commun. 123143 (1999);

Discovery of deep sub-barrier fusion hindrance

B. B. Back, H. Esbensen, C. L. Jiang and K. E. Rehm (2014). Rev. Mod. Phys. 86: 317.
"The comparison with CC calculations using a Woods-Saxon potential allowed them to cleanly identify the fusion hindrance at the lowest energies."

Argonne National Laboratory Experiments:
C. L. Jiang, H. Esbensen et al, Phys Rev Lett 89 (5), 052701 (2002);

Phys Rev Lett 93 (1), 012701 (2004);
Physical Review C 71(4): 044613 (2005)
Physics Letters B 640(1): 18-22. (2006)
Phys Rev Lett 113 (2), 022701 (2014).

ANU Experiments:
M. Dasgupta, D. J. Hinde, A. Diaz-Torres, et al, Phys Rev Lett 99, 192701 (2007).

INFN Experiments:
G. Montagnoli, A. M. Stefanini, et al,

Physical Review C 85(2): 024607. (2010);
Physics Letters B 728: 639. (2014)
Physical Review C 97(2): 024610.(2018)
Physical Review C 100(4): 044619. (2019).

Deep sub-barrier fusion hindrance $\& S$ factor

PHYSICAL REVIEW C 97, 012801 (R) (2018)
Rapid Communications

Reaction rate for carbon burning in massive stars

C. L. Jiang, ${ }^{1}$ D. Santiago-Gonzalez, ${ }^{1,2}$ S. Almaraz-Calderon, ${ }^{1,3}$ K. E. Rehm, ${ }^{1}$ B. B. Back, ${ }^{1}$ K. Auranen, ${ }^{1}$ M. L. Avila, ${ }^{1}$

Carbon burning is a critical phase for nucleosynthesis in massive stars. The conditions for igniting this burning stage, and the subsequent isotope composition of the resulting ashes, depend strongly on the reaction rate for ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion at very low energies. Results for the cross sections for this reaction are influenced by various backgrounds encountered in measurements at such energies. In this paper, we report on a new measurement of ${ }^{12} \mathrm{C}+{ }^{12} \mathrm{C}$ fusion cross sections where these back grounds have been minimized. It is found that the astrophysical S factor exhibits a maximum around $E_{\mathrm{cm}}=3.5-4.0 \mathrm{MeV}$, which leads to a reduction of the previously predicted astrophysical reaction rate.

PRL 113, 022701 (2014)
PHYSICAL REVIEW LETTERS

Fusion Hindrance for a Positive- Q-Value System ${ }^{24} \mathbf{M g}+{ }^{30} \mathbf{S i}$
C. L. Jiang, ${ }^{1, *}$ A. M. Stefanini, ${ }^{2}$ H. Esbensen, ${ }^{1}$ K. E. Rehm, ${ }^{1}$ S. Almaraz-Calderon, ${ }^{1}$ B. B. Back, ${ }^{1}$ L. Corradi, ${ }^{2}$ E. Fioretto, ${ }^{2}$ G. Montagnoli, ${ }^{3}$ F. Scarlassara, ${ }^{3}$ D. Montanari, ${ }^{3}$ S. Courtin, ${ }^{4}$ D. Bourgin, ${ }^{4}$ F. Haas,,${ }^{4}$ A. Goasduff, ${ }^{5}$

$$
\text { S. Szilner, }{ }^{6} \text { and T. Mijatovic }{ }^{6}
$$

Measurements of the excitation function for the fusion of ${ }^{24} \mathrm{Mg}+{ }^{30} \mathrm{Si}(Q=17.89 \mathrm{MeV})$ have been extended toward lower energies with respect to previous experimental data. The S-factor maximum observed in this large, positive- Q-value system is the most pronounced among such systems studied thus far. The significance and the systematics of an S-factor maximum in systems with positive fusion Q values are discussed. This result would strongly impact the extrapolated cross sections and reaction rates in the carbon and oxygen burnings and, thus, the study of the history of stellar evolution.

$$
\langle\sigma \nu\rangle \approx\left(\frac{2}{\mu}\right)^{\frac{1}{2}} \frac{\Delta E_{0}}{(k T)^{3 / 2}} S\left(E_{0}\right) \exp \left(-\frac{3 E_{0}}{k T}\right) ; \quad S(E)=\sigma E \exp (2 \pi \eta) ; \quad \eta=\frac{Z_{1} Z_{2} e^{2}}{4 \pi \epsilon_{0} \hbar v}
$$

Fusion between light nuclei is of interest because its important roles in the late stages of massive star evolution.

Explanations: adiabatic approximation \& deep potential

Center-of-Mass Distance r

- T. Ichikawa, K. Hagino and A. Iwamoto, Phys Rev C 75, 064612 (2007); Phys Rev Lett 103, 202701 (2009); T. Ichikawa, Phys Rev C 92 (6), 064604 (2015).
On top of the conventional CC method, an extra one-dimensional adiabatic potential barrier is assumed after the reacting nuclei contact with each other, considering the formation of the composite system.
- K. Hagino, A. B. Balantekin, N. W. Lwin et al, Phys Rev C 97, 034623 (2018). Two Woods-Saxon potentials with different slopes.

Explanations: sudden approximation \& shallow potential

- Ş. Mişicu and H. Esbensen, Phys Rev Lett 96 (11), 112701 (2006); Phys Rev C 75, 034606 (2007);

Hindrance of Heavy-Ion Fusion due to Nuclear Incompressibility. Double-folding potential with M3Y forces supplemented by a repulsive core.

- C. Simenel, A. S. Umar, K. Godbey, et al, Phys Rev C 95, R031601 (2017).

Density constrained time dependent Hartree-Fock model. It is concluded that: " ...to explain experimental fusion data at deep sub-barrier energies, then cannot be justified by an effect of incompressibility. It is more likely that it simulates other effects such as Pauli repulsion."

- V. V. Sargsyan, G. G. Adamian, N. V. Antonenko et al, Eur Phys J A 56, 19 (2020). Extended quantum diffusion approach + Double folding potential.

The instability of the coupled channels model

There are fluctuations at deep sub-barrier energy region. "For shallow pocket potentials, however, the IWBC should be replaced by an imaginary potential at the potential pocket to avoid numerical instabilities."

Some open questions

About deep sub-barrier fusion hindrance:

- Whether could the CC calculation of the fusion cross section be stable at the deep sub-barrier energy region?
Some works used an extra imaginary potential around the potential minimum to eliminate the fluctuations of the conventional CC calculation. However, one has to add more parameters.
- Is Woods-Saxon potential able to describe the deep sub-barrier fusion hindrance phenomenon well enough?
It is said that it is not able to describe it in many works. And hybrid potential model, other potential models, and reaction mechanisms are widely used now.
- What's the mechanism of the fusion hindrance?

The shallow potential or deep potential.

Contents

(1) Introduction on deep sub-barrier fusion hindrance

(2) The modified CC theoretical framework
(3) Results and discussions
(4) Summary and perspective

Import gradients for solving the coupled-channels equation

There are several parts to construct the coupled-channels approach:
(1) Nuclear potential:
real potential (double folding, proximity, Woods-Saxon potential), complex potential
(2) Coupled potential:
full order coupling, linear coupling, or the quadratic coupling
(3) Boundary condition:
regular boundary condition, incoming wave boundary condition
(9) Numerical method:
finite difference method (Numerov, three-point difference), finite element method (KANTBP), R-matrix method.
O. Chuluunbaatar, A. A. Gusev, et al, CPC. 177, 649 (2007)
A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, CPC 185, 3341 (2014)

The nuclear potential

The Akyüz-Winther (AW) type Woods-Saxon potential as starting point:

$$
\begin{aligned}
V_{N}^{(0)}(r) & =-\frac{V_{0}}{1+\exp \left(\left(r-R_{0}\right) / a_{0}\right)} . \\
& =\frac{-16 \pi \gamma a_{0} \bar{R}}{1+\exp \left[\left(r-R_{P}-R_{T}\right) / a_{0}\right]},
\end{aligned}
$$

A. Winther, Nucl. Phys. A 594, 203 (1995)
with

$$
\begin{aligned}
\frac{1}{a_{0}} & =1.17\left[1+0.53\left(A_{P}^{-1 / 3}+A_{T}^{-1 / 3}\right)\right] \\
\bar{R} & =\frac{R_{P} R_{T}}{R_{P}+R_{T}} \quad R_{i}=1.2 A_{i}^{1 / 3}-0.09, i=P, T \\
\gamma & =0.95\left(1-1.8 \frac{\left(N_{P}-Z_{P}\right)\left(N_{T}-Z_{T}\right)}{A_{P} A_{T}}\right)
\end{aligned}
$$

No free parameters and widely used for fusion reaction.

The coupled potential (full order coupling)

The nuclear coupling Hamiltonian can be generated by changing the potential radius to a dynamical operator $R_{0}+\hat{O}$ with $\hat{O}|\alpha\rangle=\lambda_{\alpha}|\alpha\rangle$

$$
\hat{O}=\frac{\beta_{\lambda}}{\sqrt{4 \pi}} r_{\mathrm{coup}} A_{T}^{1 / 3}\left(a_{\lambda 0}^{\dagger}+a_{\lambda 0}\right)
$$

Bohr, A. and Mottelson, B. R.
Nuclear Structure II, (1969)
The nuclear coupling potential is given on top of the potential as

$$
V_{N}^{\prime}(r, \hat{O})=-\frac{V_{0}}{1+\exp \left(\left(r-R_{0}-\hat{O}\right) / a_{0}\right)}
$$

It is considered with full order by diagonalizing the matrix \hat{O}

$$
O_{n m}=\frac{\beta_{\lambda}}{\sqrt{4 \pi}} r_{\mathrm{coup}} A_{T}^{1 / 3}\left(\sqrt{m} \delta_{n, m-1}+\sqrt{n} \delta_{n, m+1}\right)
$$

The nuclear coupling matrix elements between phonon state $|n\rangle$ and $|m\rangle$ is

$$
\begin{aligned}
V_{n m}^{(N)} & =\langle n| V_{N}^{\prime}(r, \hat{O})|m\rangle-V_{N}^{(0)} \delta_{n, m} \\
& =\sum_{\alpha}\langle n \mid \alpha\rangle\langle\alpha \mid m\rangle V_{N}^{\prime}\left(r, \lambda_{\alpha}\right)-V_{N}^{(0)} \delta_{n, m}
\end{aligned}
$$

H. Hagino et al, Comput. Phys. Commun. 123143 (1999);

The incoming wave boundary condition

The incoming wave boundary conditions (IWBC)

$$
\psi_{n}(r)=\left\{\begin{array}{l}
T_{n} \exp \left(-i k_{n}\left(r_{\min }\right) r\right), \quad r \leq r_{\min } \\
H_{l}^{-}\left(k_{n} r\right) \delta_{n, 0}-R_{n} H_{l}^{+}\left(k_{n} r\right), r \geq r_{\max }
\end{array}\right.
$$

Here $k_{n}=k_{n}(r \rightarrow+\infty)$, and $k_{n}(r)$ is the local wave number for n-th channel

$$
k_{n}(r)=\sqrt{\frac{2 \mu}{\hbar^{2}}\left(E-\epsilon_{n}-\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}-V_{N}^{(0)}(r)-\frac{Z_{P} Z_{T} e^{2}}{r}-V_{n n}(r)\right)}
$$

There are problems in the previous boundary condition.

- The plane wave boundary condition at the left boundary $r_{\text {min }}$ involves only the diagonal part. This requires that the off-diagonal matrix elements tend to zero.
- However, at $r_{\min }$, the distance between two nuclei is so short that the off-diagonal matrix elements are usually not zero. There can be sudden noncontinuous changes in the left boundary.
- A linear transformation should be done at the left boundary.
V.V. Samarin, V.I. Zagrebaev, 2004 NPA 734 E9;
V.I. Zagrebaev, V.V. Samarin, 2004 Phys. Atom. Nucl. 67 1462;

The new method KANTBP

The coupled-channels Schrödinger equation

$$
\begin{equation*}
\left[-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}}+\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{N}^{(0)}(r)+\frac{Z_{P} Z_{T} e^{2}}{r}+\epsilon_{n}-E\right] \psi_{n n_{o}}+\sum_{n^{\prime}=1}^{N} V_{n n^{\prime}}(r) \psi_{n^{\prime} n_{o}}(r)=0 \tag{1}
\end{equation*}
$$

with

- n_{o} is a number of the open entrance channel with a positive relative energy $E_{n_{o}}=E-\epsilon_{n_{o}}>0, n_{o}=1, \ldots, N_{o} \leq N$.
- $\left\{\psi_{n n_{o}}(r)\right\}_{n=1}^{N}$ are components of a desirable matrix solution.

Let \mathbf{W} is the symmetric matrix of dimension $N \times N$

$$
\begin{equation*}
W_{n m}=W_{m n}=\frac{2 \mu}{\hbar^{2}}\left[\left(\frac{l(l+1) \hbar^{2}}{2 \mu r^{2}}+V_{N}^{(0)}(r)+\frac{Z_{P} Z_{T} e^{2}}{r}+\epsilon_{n}\right) \delta_{n m}+V_{n m}(r)\right] \tag{2}
\end{equation*}
$$

Then the equation can be expressed as

$$
\begin{equation*}
-\psi_{n m}^{\prime \prime}(r)+\sum_{m^{\prime}} W_{n m^{\prime}} \psi_{m^{\prime} m}(r)=\frac{2 \mu E}{\hbar^{2}} \psi_{n m}(r) \tag{3}
\end{equation*}
$$

The new method KANTBP

Diagonalize the matrix at $r=r_{\text {min }}$

$$
\begin{equation*}
\mathbf{W} \mathbf{A}=\mathbf{A} \tilde{\mathbf{W}}, \quad\{\tilde{\mathbf{W}}\}_{n m}=\delta_{n m} \tilde{W}_{m m}, \quad \tilde{W}_{11} \leq \tilde{W}_{22} \ldots \leq \tilde{W}_{N N} . \tag{4}
\end{equation*}
$$

The functions $y_{m}(r)$ are solutions of the uncoupled equations

$$
\begin{equation*}
y_{m}^{\prime \prime}(r)+K_{m}^{2} y_{m}(r)=0, \quad K_{m}^{2}=\frac{2 \mu E}{\hbar^{2}}-\tilde{W}_{m m} . \tag{5}
\end{equation*}
$$

In open channels at $K_{m}^{2}>0, m=1, \ldots, M_{o} \leq N$ the solutions $y_{m}(r)$ have the form:

$$
\begin{equation*}
y_{m}(r)=\frac{\exp \left(-\imath K_{m} r\right)}{\sqrt{K_{m}}} . \tag{6}
\end{equation*}
$$

In this case $\psi_{n n_{o}}(r)$ expressed by the linear combinations of the linear independent solutions

$$
\begin{equation*}
\psi_{n n_{o}}(r)=\sum_{m=1}^{M_{o}} A_{n m} y_{m}(r) \hat{T}_{m n_{o}}, \quad r=r_{\min } \tag{7}
\end{equation*}
$$

In this way, the off-diagonal matrix elements have been considered in the calculation.

The new method KANTBP

Summary of the boundary conditions for open channels

$$
\psi_{n n_{o}}^{a s}(r)=\left\{\begin{array}{l}
\sum_{m=1}^{M_{o}} A_{n m} \frac{\exp \left(-\imath K_{m} r\right)}{\sqrt{K_{m}}} \hat{T}_{m n_{o}}, \quad r=r_{\min }, \tag{8}\\
\hat{H}_{l}^{-}\left(k_{n} r\right) \delta_{n, n_{o}}+\hat{H}_{l}^{+}\left(k_{n} r\right) \hat{R}_{n n_{o}}, r=r_{\max }
\end{array}\right.
$$

In this case the partial tunneling probability from the ground state $\left(n_{o}=1\right)$ is

$$
\begin{equation*}
P_{l}(E) \equiv T_{n_{o} n_{o}}^{(l)}(E) \tag{9}
\end{equation*}
$$

At fixed orbital momentum l, it is given by summation over all possible intrinsic states:

$$
\begin{equation*}
T_{n_{o} n_{o}}^{(l)}(E)=\sum_{m=1}^{M_{o}}\left|\hat{T}_{m n_{o}}\right|^{2}, \quad R_{n_{o} n_{o}}^{(l)}(E)=\sum_{n=1}^{N_{o}}\left|\hat{R}_{n n_{o}}\right|^{2}, \quad T_{n_{o} n_{o}}^{(l)}(E)=1-R_{n_{o} n_{o}}^{(l)}(E) \tag{10}
\end{equation*}
$$

The condition $T_{n_{o} n_{o}}^{(l)}(E)+R_{n_{o} n_{o}}^{(l)}(E)-1=0$ fulfills with ten significant digits by the element method KANTBP.
O. Chuluunbaatar, A. A. Gusev, A.G. Abrashkevich et al, CPC. 177, 649 (2007)
A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, CPC 185, 3341 (2014) A. A. Gusev, O. Chuluunbaatar, S. I. Vinitsky et al, Math. Mod. Geom. 3, 222 (2015) V. I. Zagrebaev, Phys. Rev. C 78047602 (2008)

Contents

(1) Introduction on deep sub-barrier fusion hindrance

2 The modified CC theoretical framework
(3) Results and discussions
(4) Summary and perspective

When $l=0$
$\frac{\hbar^{2}}{2 \mu} W_{n m}=\left[\left(V_{N}+\epsilon_{n}\right) \delta_{n m}+V_{n m}(r)\right]$
"Before": diagonal elements of $\frac{\hbar^{2}}{2 \mu} W$
"After": diagonal elements of $\frac{\hbar^{2}}{2 \mu} \tilde{W}$

H. Hagino et al, 1999 CPC 123 143;
Ecm (MeV) sigma (mb) <l>

55.00000	$0.97449 \mathrm{E}-02$	5.87031
56.00000	0.05489	5.94333
57.00000	0.28583	6.05134
58.00000	1.36500	6.19272
59.00000	5.84375	6.40451
60.00000	20.59856	6.86092
61.00000	52.14435	7.81887
62.00000	94.62477	9.18913
63.00000	139.58988	10.65032
64.00000	185.55960	11.98384
65.00000	234.04527	13.13045
66.00000	283.93527	14.18620
67.00000	333.26115	15.21129
68.00000	381.21017	16.20563
69.00000	427.61803	17.16333
70.00000	472.48081	18.08211
71.00000	515.83672	18.96273
72.00000	557.73621	19.80734

Tunneling probability and fusion cross sections at linearizion and logarithmic scale for ${ }^{16} \mathrm{O}+{ }^{144} \mathrm{Sm}$.

Calculations by the KANTBP method agree well with the MNumerov method.

${ }^{32} \mathrm{~S}+{ }^{182} \mathrm{~W}$: the coupled potential

S. I. Vinitsky, P. W. Wen, A. A. Gusev, O. Chuluunbaatar, R. G. Nazmitdinov, A. K. Nasirov, C. J. Lin, H. M. Jia and A. Góźdź, Acta Phys. Pol. B Proc. Suppl. 13 (3), 549 (2020).

There are many non-diagonal elements of $\hat{O}_{n m}(r)$ at $r_{\text {min }}$.
S. I. Vinitsky, P. W. Wen, A. A. Gusev, O. Chuluunbaatar, R. G. Nazmitdinov, A. K. Nasirov, C. J. Lin, H. M. Jia and A. Góźdź, Acta Phys. Pol. B Proc. Suppl. 13 (3), 549 (2020).

There are obvious differences in sub-barrier energy region.

${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo}$: Deep sub-barrier fusion

Jiang, C. L, et al, 2005 PRC 71044613

about 7 MeV (for the same $\Delta R=0.21 \mathrm{fm}$). This is a general feature of coupled-channels calculations; and it is, therefore, very unlikely that any minor adjustment in the coupledchannels calculations would reproduce the steep falloff that the data exhibit at extreme sub-barrier energies. Thus, it appears that the fusion hindrance behavior, which now has been observed for many systems, is also present in the new data for ${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo}$. This will be shown more convincingly in the next section, where other representations of the fusion cross section are discussed.

Mişicu et al, 2007 PRC 75 034606;

A.V. Karpov et al, 2015 PRC 92 064603;

The CC calculations with the M3Y+repulsion potential is usually used.

${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo},{ }^{28} \mathrm{Si}+{ }^{64} \mathrm{Ni}$: Deep sub-barrier fusion

Hindrance of Heavy-Ion Fusion due to Nuclear Incompressibility

Ş. Mişicu* and H. Esbensen
Physics Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
(Received 26 January 2006; published 21 March 2006)

The M3Y+repulsion potential is usually used.

Ş. Mişicu, et al, 2007 PRC 75 034606;
C.L. Jiang et al, 2018 PRC 97012801

${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo},{ }^{28} \mathrm{Si}+{ }^{64} \mathrm{Ni}$: Deep sub-barrier fusion

Two potentials including a larger (smaller) logarithmic slope at energies lower (higher) than the threshold energy

${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo}$: Deep sub-barrier fusion

New calculations are more stable and agree with experimental data
better

The M3Y+repulsion potential is usually used. The weak imaginary potential is adopted to eliminate some unwanted fluctuations.
A.M. Stefanini, et al, 2008 PRC 78 044607; G. Montagnoli et al, 2013 PRC 87014611

New calculations are more stable, and are higher than experimental data at deep sub-barrier energy.
P. W. Wen, O. Chuluunbaatar, et al, Phy. Rev. C, 101:014618, 2020.
S. I. Vinitsky, P. W. Wen, et al, Acta Phys. Pol. B Proc. Suppl., 13:549, 2020.

	AW	Ch-0	Ch-1	Ch-17
$N_{P_{3}}{ }^{2}$	-	0	1	1
$N_{P}{ }_{2}+$	-	0	0	2
$N_{T_{2}+}$	-	0	0	2
$V_{0}(\mathrm{MeV})$	61.338	72.325	61.462	55.911
$a_{0}(\mathrm{fm})$	0.654	0.636	0.662	0.676
$R_{0}(\mathrm{fm})$	8.143	8.272	8.208	8.167
$V_{B}(\mathrm{MeV})$	42.706	41.885	42.305	42.617
$R_{B}(\mathrm{fm})$	10.052	10.296	10.146	10.042
$\hbar \omega(\mathrm{MeV})$	3.285	3.315	3.237	3.196

- This reaction can be fitted well by different set of WS parameters.
- The parameters are not far from AW potential parameters.

${ }^{36} \mathrm{~S}+{ }^{48} \mathrm{Ca}$: Deep sub-barrier fusion

C.H. Dasso, et al, 2003 PRC 68054604

The deep sub-barrier cross sections are sensitive to the potential pocket.
P. W. Wen, C. J. Lin, R. Nazmitdinov, S. I. Vinitsky, et al. PRC, 103, 054601, 2021.

Woods-Saxon potential and multiphonon coupling are enough.

TABLE I. Woods-Saxon potential parameters $V_{0}(\mathrm{MeV}), a_{0}(\mathrm{fm})$, and $R_{0}(\mathrm{fm})$ for ${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo},{ }^{64} \mathrm{Ni}+{ }^{64} \mathrm{Ni}$, and ${ }^{28} \mathrm{Si}+{ }^{64} \mathrm{Ni}$ reaction systems. The potential barrier V_{B} and the minimum of the potential pocket V_{P} are also listed.

	${ }^{64} \mathrm{Ni}+{ }^{100} \mathrm{Mo}$	${ }^{64} \mathrm{Ni}+{ }^{64} \mathrm{Ni}$	${ }^{28} \mathrm{Si}+{ }^{64} \mathrm{Ni}$
$V_{0}(\mathrm{MeV})$	79.938	65.829	53.529
$a_{0}(\mathrm{fm})$	0.686	0.801	0.944
$R_{0}(\mathrm{fm})$	10.190	9.239	7.790
$V_{\mathrm{B}}(\mathrm{MeV})$	136.993	96.389	51.946
$V_{\mathrm{P}}(\mathrm{MeV})$	119.344	85.699	43.298

$\langle l\rangle$ could be used as a probe to seperate these two mechanisms.
Ichikawa, T. (2015). Phys Rev C 92: 064604.

Jiang, C. L. et al 2018 PRC 97012801

A. Diaz-Torres, et al, 2018 PRC 97055802

Time dependent tunneling treatment is important.

A. M. Stefanini, G. Montagnoli, et al, Phys Rev C 82, 014614 (2010)

${ }^{58} \mathrm{Ni}+{ }^{54} \mathrm{Fe}$ calculations (preliminary results)

The fitted WS potential parameters are $V_{0}=51.312 \mathrm{MeV}, R_{0}=9.268 \mathrm{fm}$, and $a_{0}=0.688 \mathrm{fm}$.

The diffuseness parameter is normal.

Fusion Hindrance for a Positive- Q-Value System ${ }^{24} \mathbf{M g}+{ }^{30} \mathbf{S i}$

C. L. Jiang, ${ }^{1,{ }^{*}}$ A. M. Stefanini, ${ }^{2}$ H. Esbensen, ${ }^{1}$ K. E. Rehm, ${ }^{1}$ S. Almaraz-Calderon, ${ }^{1}$ B. B. Back, ${ }^{1}$ L. Corradi, ${ }^{2}$ E. Fioretto, ${ }^{2}$ G. Montagnoli, ${ }^{3}$ F. Scarlassara, ${ }^{3}$ D. Montanari, ${ }^{3}$ S. Courtin, ${ }^{4}$ D. Bourgin, ${ }^{4}$ F. Haas, ${ }^{4}$ A. Goasduff, ${ }^{5}$ S. Szilner, ${ }^{6}$ and T. Mijatovic ${ }^{6}$

Measurements of the excitation function for the fusion of ${ }^{24} \mathrm{Mg}+{ }^{30} \mathrm{Si}(Q=17.89 \mathrm{MeV})$ have been extended toward lower energies with respect to previous experimental data. The S-factor maximum observed in this large, positive- Q-value system is the most pronounced among such systems studied thus far. The significance and the systematics of an S-factor maximum in systems with positive fusion Q values are discussed. This result would strongly impact the extrapolated cross sections and reaction rates in the carbon and oxygen burnings and, thus, the study of the history of stellar evolution.

Contents

(1) Introduction on deep sub-barrier fusion hindrance

2 The modified CC theoretical framework
(3) Results and discussions
(4) Summary and perspective

Potential answers to the previous questions based on sudden approximation:

- Whether could the calculation of the fusion cross section be stable at the deep sub-barrier energy region?
The calculations are stable now with the coupled-channels approach adopting the finite element method KANTBP with the improved boundary condition.
- Is Woods-Saxon potential able to describe the deep sub-barrier fusion hindrance phenomenon well enough?
The deep sub-barrier fusion cross sections, as well as the S facotr, of several typical reactions have been successfully described by using the most simple 3 parameter WS potential and multiphonon couplings.
- What's the mechanism of the fusion hindrance?
$\langle l\rangle$ could be used to clarify shallow or deep potential.

Perspective

- What's the systematics of the maximum of fusion hindrance and S factor with respect to different reaction systems?
We have fitted several reactions with hindrance feature at deep subbarrier energy region, and are trying to see the systematics by fitting more reactions.
- The impact of the finite elements method on complex potential and regular boundary condition?
The current version of the high accuracy KANTBP is only suitable for real potential yet. Prof. S. I. Vinitsky, O. Chuluunbaatar, A. A. Gusev are working on this aspect.
- The role of other mechanisms like transfer or decoherence on deep subbarrier fusion hindrance?

Thank you for your attention!

