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α production in 6He scattering

6He +208 Pb → α+ X
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+CDCC reproduces elastic scattering, but not inclusive α’s.
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Exclusive versus inclusive deuteron breakup
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Inclusive breakup:
d+12C→ p+ X
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Elastic and nonelastic “breakup” modes: the A(6Li,α)X example
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é For a reaction of the form a(= b + x) + A → b + anything

σb = σEBU + σNEB + σCN
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Explicit evaluation of inclusive cross sections

é Inclusive breakup could in principle be evaluated computing all contributing
processes using standard reaction methods, such as DWBA or CRC.

é This procedure has serious shortcomings:
Final x+A states span a wide range of excitation energies and spins, so the
number of populated states will in general be huge.

A significant part of the inclusive spectrum corresponds to x-A continuum.

An explicit calculation would require a detailed knowledge of the populated
states: spin/parity, spectroscopic factors,…, which are poorly known above a
few MeV of excitation energy

Final states will include, in addition to direct processes, partial fusion (“incom-
plete fusion”), which are not easily accounted for by standard direct reaction
theories.

Inclusive breakup models based on closed-form formulas provide an efficient (and ele-
gant) alternative which exploit the fact that nonelastic x − A processes are encoded in
the imaginary part of the UxA optical potential.
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Two-body case: optical model potential

Problem: describe a + A scattering in a restricted (projected) modelspace
(the P space) consisting of the projectile and target ground states without
explicit inclusion other states:

Ψ = ΨP︸︷︷︸
elastic

+ ΨQ︸︷︷︸
non-elastic

Schrodinger equation in modelspace:

[T + V] ΨP = EΨP

V = VPP︸︷︷︸
Bare interaction

+VPQ
1

E − HQQ + iϵVQP︸ ︷︷ ︸
“Polarization” potential

V too complicated ⇒ usually replaced by some energy-averaged optical potential Ua (complex)
Asymptotically, ΨP contains only the elastic channel so it provides only a+A elastic scattering
However, in virtue of the optical theorem, it provides also the total reaction cross section:

σreac = −
2

h̄va
⟨ΨP| Im[Ua]|ΨP⟩
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Three-body case: the x − A channel wavefunction
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Problem: We would like to solve the three-body scattering problem a+A →
b+x+A in a projected modelspace including explicitly only the target ground
state.
Due to the A(g.s.) projection, the x − A interaction becomes complex Ux.
The final x−A wavefunction in the projected modelspace, ψ0

x (⃗kb, r⃗x), must
be consistent with the production of the b fragment with momentum k⃗b.
Asymptotically, the x−A wavefunction contains only the A(g.s), i.e., EBU:

ψ0
x (⃗kb, r⃗x) → f(⃗kb, k⃗x)

eikxrx

rx

The absorption taking place in the x−A channel is, by definition, the NEB
part of the b inclusive cross section:

d2σ = − 2

h̄vi
⟨ψ0

x |Wx|ψ0
x ⟩

d⃗kb

(2π)3
⇒ d2σ

dEbdΩb

∣∣∣∣
NEB

= − 2

h̄va
ρb(Eb)⟨ψ0

x |Wx|ψ0
x ⟩

But, how to compute the x-channel wavefunction ψ0
x (⃗kb, r⃗x)?
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Searching in the eighties for inclusive breakup models

Baur & co: DWBA sum-rule with surface approximation.
Baur et al, PRC21, 2668 (1980).

Hussein & McVoy: extraction of singles cross section combining the spec-
tator model with sum rule over final states.

Nucl. Phys. A445, 124 (1985).

Ichimura, Austern, Vincent (IAV): Post-form DWBA.
Ichimura, Austern, Vincent, PRC32, 431 (1985).
Austern al, Phys. Rep.154, 125 (1987).

Udagawa, Tamura (UT): prior-form DWBA.
Udagawa and Tamura, PRC24, 1348 (1981).
Udagawa, Lee, Tamura, PLB135, 333 (1984).

éMost of these theories have fallen into disuse and are now being revisited by
several groups
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Revisiting the inclusive breakup models

Recent implementations of inclusive breakup theories:
Carlson, Capote, Sin, FBS57, 307 (2016).
Potel, Nunes, Thompson, PRC92, 034611 (2015).
Lei, AMM, PRC92, 044616 (2015).

Brett Carlson, Mahir Hussein, A.M.M. and Gregory Potel at the workshop “Deuteron-induced
reactions and beyond: inclusive breakup fragment cross sections, MSU, July 2016”

G. Potel, Eur. Phys. J. A (2017) 53: 178).
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Calculation of the x-channel wavefunction ψ0
x (⃗kb, r⃗x) in the spectator model

é Spectator model: b scatters elastically by the target but does not influence
the breakup; its motion is described by a distorted wave χ(−)

b (⃗kb, rb).

é Within the spectator model and assuming 3-body model of the reaction,
Austern et al. (Phys. Rep. 154 , 125 (1987)) derived:

φ3B
x (⃗rx) = ⟨⃗rxχ

(−)
b (⃗kb)|Ψ3B(+)⟩

with Ψ3B(+) a 3-body scattering wavefunction.

é In practice, no straightforward choice for Ψ3B(+), e.g.:
6 Faddeev: accurate, but difficult to compute
6 CDCC: more feasible, but only accurate for small b-x separations
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Alternative expressions for ψ0
x (⃗kb, r⃗x)

The 3-body model of Austern et al (3B):

(E+
x − Kx − Ux)φ

3B
x (⃗rx) = ⟨⃗rx χ

(−)
b |Vpost|Ψ3B(+)⟩ Vpost ≡ Vbx +UbA −UbB

The Ichimura, Austern, Vincent post-form DWBA formula (IAV):

(E+
x − Kx − Ux)φ

post
x (⃗rx) = ⟨⃗rx χ

(−)
b |Vpost|χ(+)

a ϕa⟩ Vpost ≡ Vbx+UbA−UbB

The Udagawa and Tamura prior-form formula DWBA (UT):

(E+
x − Kx − Ux)ψ

prior
x (⃗rx) = ⟨⃗rx χ

(−)
b |Vprior|χ(+)

a ϕa⟩ Vprior ≡ UxA+UbA−Ua

The Hussein-McVoy formula (HM):

φ
HM
x (⃗rx) = ⟨⃗rxχ

(−)
b |χ(+)

a ϕa⟩
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Relation among IAV, HM and UT models

IAV, UT and HM are related by:

φpost
x (⃗rx) = φprior

x (⃗rx) + φHM
x (⃗rx)

Extensive comparisons with experimental data clearly favour the IAV model
over the UT and HM theories:
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The UxA potential

(Ex − Kx − Ux)φ
post
x (⃗rx) = ⟨⃗rx χ

(−)
b |Vpost|χ(+)

a ϕa⟩

For Ex > 0, Ux is the usual optical model potential describing x−A elastics
+ Im[Ux] accounts for x − A absorption.
For Ex < 0, Ux represents the distribution of single-particle (s.p.) states
+ Im[Ux] accounts for s.p. fragmentation (spreading widths).

é These properties are naturally accommodated in dispersive optical model
(DOM) potentials

é Both “transfer” to unbound states and bound states described on an equal
footing
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Applications of the IAV model to inclusive breakup
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Application of IAV model to deuteron inclusive breakup

EBU calculated with CDCC.
NBU calculated with DWBA IAV model
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Application to 209Bi (6Li,α)X

Large α yield (σα ≫ σd) ⇒ evidence of NEB channels
EBU alone cannot explain the data.

Assume: σα ≃ σEBU + σNEB:
EBU é CDCC
NEB é IAV
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Application to 209Bi (6Li,α)X

Assume: σα ≃ σEBU + σNEB:
EBU é CDCC
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Application to exotic nuclei

64Zn(11Be,10Be)X @ 28.7 MeV
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Applications of the IAV model to fusion
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The problem of complete fusion suppression at above-barrier energies

CF of weakly bound nuclei suppressed at energies above the Coulomb barrier:

Observed for weakly bound projec-
tiles (6,7,8Li,9Be)
CF reduced by ∼30% with respect
to BPM or CC calculations.

M. Dasgupta et al., PRC 70, 024606 (2004)

Common interpretation:
é CF is mostly reduced by breakup and incomplete fusion (ICF).
é ICF is modeled as a two-step process: elastic breakup followed by capture

of one charged fragment (breakup-fusion, BF).

…but, calculations based on this two-step picture give only a modest reduction
of CF (eg. Cook et al. , PRC 93, 064604 (2016)).
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Indirect evaluation of the CF cross section

CF is related to other nonelastic channels by the reaction cross section.
For a two-body projectile (a = b + x):

σR ≈ σCF + σinel + σEBU + σ
(b)
NEB + σ

(x)
NEB

CF can be deduced from

σCF ≈ σR︸︷︷︸
CDCC/OM

− σinel︸︷︷︸
CC/CDCC

−σEBU︸ ︷︷ ︸
CDCC

− (σ
(b)
NEB + σ

(x)
NEB)︸ ︷︷ ︸

IAV model

N.b. Since ICF is part of the NEB, the calculated CF takes into account
the flux going to ICF
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Results for 6,7Li+209Bi

What is the relative contribution of the different nonelastic channels?
EBU: computed with CDCC
NEB: computed with IAV model
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Results for 6,7Li+209Bi

Effect of nonelastic channels on fusion
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The Trojan Horse Mechanism

In 209Bi(6,7Li,α)X near the barrier, the d/t+209Bi are below their Coulomb barrier. What is the
mechanism permitting the large absorption probability of these fragments? Trojan Horse effect.
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R é d/t + 209Bi absorption enhanced in three-

body reaction with respect to free two-body
case.

é The 6,7Li brings the light fragment (d/t) in-
side its Coulomb barrier Trojan Horse mech-
anism.

é This is the mechanism behind the TH
method used in nuclear astrophysics.
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Extraction of the ICF component of the NEB
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Isolating the ICF part of NEB

NEB includes x − A ICF, but also other nonelastic processes such as target
excitation.

Heuristic approach: associate ICF with absorption inside the Coulomb
barrier due to short-range imaginary potential Wfus

xA :

dσICF

dΩbdEb
≈ − 2

h̄va
ρb(Eb)⟨φx|Wfus

xA |φx⟩

Caveats:
Energy dependence of Wfus

xA ?
Dependence of ICF on Wfus

xA parameters?
Presence of surface absorption in WaA results in unphysically small ICF cross
section

See alternative approaches by:
é Parkar, Jha, Kailas, PRC 94, 024609 (2016).
é Rangel, Cortés, Lubian, Canto, PLB 803 (2020) 135337; Cortés et al ,PRC 102, 064628 (2021)
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ICF in 7Li+124Sn
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ICF in 7Li+209Bi
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Excitation energy distribution of ICF in 7Li+209Bi

+ Since the theory provides the differential cross section

dσICF

dΩbdEb

angular and energy distributions can also be obtained.
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Application to surrogate reactions

ICF cross sections are also needed for a meaningful analysis of surrogate
reactions aimed at indirect measurements of neutron induced reactions
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Application to intermediate energy knockout reactions
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Spectroscopic from momentum distributions

Fast-moving projectile on a (typically) light target.
One nucleon suddenly removed (absorbed) due to its interaction with the
target.
The remaining residue remain unchanged and is detected.
The momentum of the core is related to that of the removed nucleon because
in the rest frame of the projectile P⃗ = 0

P⃗ = p⃗c + p⃗1 = 0
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The Eikonal HM formula

Start from the Hussein-McVoy prescription for the x-channel WF:

φ
HM
x (⃗rx) = ⟨⃗rxχ

(−)
b |χ(+)

a ϕa⟩

Approximations:
UaA = UxA + UbA
χ
(+)
a and χ

(−)
b treated in the Glauber (eikonal) limit

Leads to the popular Eikonal Hussein-McVoy formula for NEB (“stripping”):

σEHM
NEB =

2

va
(2π)3

Ex

h̄kx

∫
d3r⃗bd3r⃗x |ϕa (⃗rbx)|2 |SbA(bb)|2

[
1− |SxA (bx)|2

]
with:

|SbA(bb)|2=probability of survival of the core.
1− |SxA(bx)|2=probability of absorption of the x particl .

A similar formula can be obtained for the EBU part (“diffraction”)
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Extraction of SFs from knockout reactions

Agreement theory vs experiment quantified with the reduction factor:

Rs =
σtheor

σexp

with
σtheor =

∑
nℓj

Sa
bx(I; nℓj)σsp(I; nℓj) σsp(I; nℓj) = σ

EBU
sp + σ

NEB
sp

+ Rs < 1 ⇒ possible correlations (long-range, short-range, tensor,…) not included in σtheor?
+ Rs strongly dependent on ∆S = Sp − Sn.
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-Gade et al, PRC 77, 044306 (2008)
Tostevin, PRC90,057602(2014)
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∑
nℓj

Sa
bx(I; nℓj)σsp(I; nℓj) σsp(I; nℓj) = σ

EBU
sp + σ

NEB
sp

Tostevin and Gade,
arXiv:2103.13133 (2021)
(Posted today!)

+ Rs < 1 ⇒ possible correlations (long-range, short-range, tensor,…) not included in σtheor?
+ Rs strongly dependent on ∆S = Sp − Sn.
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Extraction of SFs from knockout reactions

...however, this behaviour have not been corroborated by other probes, such as
transfer or proton-induced knockout reactions (p, pN)

HI knockout (∼100 MeV/u)
Tostevin, PRC90,057602(2014)

- Reaction model: eikonal + adiabatic
- Rs strongly dependent on Sp − Sn.

Low-energy transfer
Flavigny, PRL110, 122503(2013)
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DWBA, CRC
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(p, pN) @ 200-400 MeV/u
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- Reaction models: DWIA, TC
- Rs ∼ constant.

+ Similar results from RIKEN
Wakase, PTEP 021D01 (2018)

Rs from knockout disagree with those from transfer and (p, pN) ⇒ description
of reaction mechanism?
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Benchmarking the Eikonal HM formula with full (noneikonal) IAV

Test case: 14O(-1n) and 14O(-1p) on 9Be target with the same
(energy-independent) potentials and structure model
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The Eikonal HM model (EHM) compares very well with the IAV result, even at relatively low
incident energies (∼50 MeV/u)
The quantum-mechanical HM model (HM) works better for well bound nuclei, but deviates
from IAV for weakly-bound nuclei.
Other effects relevant for the comparison with data (e.g. energy dependence of OMPs) not
considered here (see Flavigny, PRL 108, 252501 (2012), J. Lei and Bonaccorso, PLB813 (2021) 136032)
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Why the EHM is apparently so accurate?

φpost
x = Gx⟨⃗rx χ

(−)
b |Vprior|ψ3B(+)

xb ⟩+ ⟨⃗rxχ
(−)
b |ψ3B(+)

xb ⟩

with Gx = (E+
x − Kx − Ux)

−1

1 HM formula: |Ψ3B(+)⟩ ≈ |χ(+)
a ϕa⟩

φpost
x (⃗rx) = φprior

x (⃗rx) + φHM
x (⃗rx)

2 Eikonal HM (EHM) formula: Ua = UbA + UxA ⇒ Vprior = 0

φpost
x = ⟨⃗rxχ

(−)
b |ψ3B(+)

xb ⟩
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Summary

Inclusive breakup processes are a commonplace in nuclear reactions studies.

Closed-form formulae, such as that by IAV, provides an accurate and efficient
tool to compute inclusive breakup cross sections.

NEB mechanisms (including ICF) provide a quantitative description of CF
suppression of weakly-bound projectiles.

ICF can be approximately isolated from the NEB cross section using short-
range absorptive potentials

Other promising applications in progress by several groups: knockout reac-
tions, surrogate method,...
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