Theory of complete and incomplete fusion for weakly bound systems

Institute of Physics Federal Fluminense UniversityU jlubian@id.uff.br

Fusion of tightly bound nuclei

Theoretical estimation

- Potential Scattering approach
- Fusion is not a channel

$$
\sigma_{\mathrm{F}}(E)=\frac{\pi}{K^{2}} \sum_{l=0}(2 l+1) P_{l}^{\mathrm{F}}(E) \quad P_{l}^{\mathrm{F}}(E)=1-\left|S_{l}(E)\right|^{2}
$$

- Alternative version (from continuity equation)

$$
\begin{aligned}
V(R)=U(R)-i W^{F} & (R) \\
& \longleftrightarrow \sigma_{\mathrm{F}}=\frac{k}{E}\langle\psi| W^{F}|\psi\rangle
\end{aligned}
$$

Theoretical estimation (cont.)

- Potential Scattering approach

It will only work when there is no relevant couplings at all !!!!!!!

Can the imaginary potential be divided into two parts when there are relevant couplings?

NO !!!!!!!

$$
V(R)=U(R)-i W^{F}(R)-i W^{D}(R)
$$

Theoretical estimation

- Potential Scattering approach (almost never works)

Intrinsic states
Alternative?

- Coupled Channels (inelastic, rearrangement)

$$
\begin{aligned}
{\left[E_{\alpha}-H_{\alpha}\right] \psi_{\alpha}^{(+)}=} & \sum_{\alpha^{\prime} \neq \alpha} V_{\alpha \alpha^{\prime}} \psi_{\alpha^{\prime}}^{(+)}, \quad \alpha, \alpha^{\prime}=1, N \\
& \longmapsto \sigma_{\mathrm{F}}=\frac{K}{E} \sum_{\alpha \alpha^{\prime}=1}\left\langle\psi_{\alpha}\right| W_{\alpha \alpha^{\prime}}\left|\psi_{\alpha^{\prime}}\right\rangle
\end{aligned}
$$

$$
\sigma_{\mathrm{R}}=\frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left[1-\left|S_{0 l}(E)\right|^{2}\right]
$$

Collisions of weakly nuclei (different fusion processes)

Other processes: elastic scattering, quasi-elastic scattering, transfer reactions, quasifission, deep inelastic, fission, break-up triggered by transfer .

Procedures used to answer: "Enhancement or suppression in relation to what?

a) Comparison of data with theoretical predictions.
b) Comparison of data for weakly and tightly bound systems.

1. Experiment vs. theory

$\Delta \sigma_{\mathrm{F}} \equiv \sigma_{\mathrm{F}}^{\text {exp }}-\sigma_{\mathrm{F}}^{\text {theo }} \Rightarrow$ 'ingredients' missing in the theory

Theoretical possibilities:

a) Single channel - standard densities
$\Delta \sigma_{\mathrm{F}}$ arises from all static and dynamic effects
b) Single channel - realistic densities
$\Delta \sigma_{\mathrm{F}}$ arises from couplings to all channels
c) CC calculation with all relevant bound channels
$\Delta \sigma_{\mathrm{F}}$ arises from continuum couplings
d) CDCC
no deviation expected

2. Compare with σ_{F} of a similar tightly bound system

Differences due to static effects:

1. Gross dependence on size and charge:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{P}}, \mathrm{Z}_{\mathrm{T}}, \mathrm{~A}_{\mathrm{P}}, \mathrm{~A}_{\mathrm{T}}-\text { affects } V_{\mathrm{B}} \text { and } R_{\mathrm{B}} \\
& V_{\mathrm{B}} \sim Z_{\mathrm{P}} Z_{\mathrm{T}} e^{2} / R_{\mathrm{B}} ; \quad \sigma_{\mathrm{geo}} \sim \pi R_{\mathrm{B}}^{2}, \quad R_{\mathrm{B}} \propto\left(A_{\mathrm{P}}^{1 / 3}+A_{\mathrm{T}}^{1 / 3}\right)
\end{aligned}
$$

2. Different barrier parameters due to diffuse densities (lower and thicker barriers)

Fusion data reduction required!

Fusion functions $F(x)$ (our reduction method)

$$
E \rightarrow x=\frac{E-V_{B}}{\mathrm{~h} \omega} \quad \text { and } \quad \sigma_{F}^{\exp } \rightarrow F_{\exp }(x)=\frac{2 E}{\mathrm{~h} \omega R_{B}^{2}} \sigma_{F}^{\exp }
$$

Inspired in Wong's approximation

$$
\begin{aligned}
& \sigma_{F}^{W}=R_{B}^{2} \frac{\mathrm{~h} \omega}{2 E} \ln \left[1+\exp \left(\frac{2 \pi\left(E-V_{B}\right)}{\mathrm{h} \omega}\right)\right] \\
& \text { If } \quad \sigma_{\mathrm{F}}^{\exp }=\sigma_{\mathrm{F}}^{\mathrm{W}} \quad \Rightarrow \quad F(x)=F_{0}(x)=\ln [1+\exp (2 \pi x)]
\end{aligned}
$$

$F_{0}(x)=$ Universal Fusion Function (UFF) system independent!

Direct use of the reduction method

Compare $F_{\text {exp }}(x)$ with UFF for x values where $\sigma_{\mathrm{F}}^{\mathrm{opt}}=\sigma_{\mathrm{F}}^{\mathrm{W}}$ Deviations are due to couplings with bound channels and breakup

Refining the method

Eliminate the failure of the Wong model for light systems at sub-barrier energies

Eliminate influence of couplings with bound channels
Renormalized fusion function

$$
F_{\text {exp }}(x) \rightarrow \bar{F}_{\text {exp }}(x)=\frac{F_{\text {exp }}(x)}{R(x)}, \text { with } R(x)=\frac{\sigma_{\mathrm{F}}^{\mathrm{CC}}}{\sigma_{\mathrm{F}}^{W}}=\frac{\sigma_{\mathrm{F}}^{\mathrm{CC}}}{\sigma_{\mathrm{F}}^{\text {opt }}}
$$

If CC calculation describes data $\rightarrow \bar{F}_{\text {exp }}=\mathrm{UFF}$

Use of UFF for investigating the role of BU dynamical effects on the total fusion of heavy weakly bound systems

No effect above the barrier- enhancement below the barrier

Use of UFF for investigating the role of BU dynamical

 effects on the complete fusion of stable weakly bound heavy systems

We did not include any resonance of the projectiles in CC calc.
Suppression above the barrier- enhancement below the barrier

Fusion of neutron halo ${ }^{6,8} \mathrm{He},{ }^{11} \mathrm{Be}$

Conclusion from the systematic (several systems): CF enhancement at sub-barrier energies and suppression above the barrier, when compared with what it should be without any dynamical effect due to breakup and transfer channels.

How to measure and calculate CF, and ICF?

Finding CF and ICF cross section is a great challenge (both for experimentalists and theorists)

Experiment:

- $\sigma_{\text {CF }}$ absorption of all projectile charge $\left({ }^{11} \mathrm{Be}={ }^{10} \mathrm{Be}+\mathrm{n}\right)$
- Most experiments determine only $\sigma_{T F}$
- Individual $\sigma_{\text {CF }}$ and/or $\sigma_{\text {ICF }}$ have been measured for some particular stable P-T combinations:

Some example
${ }^{6,7} \mathrm{Li}+{ }^{209} \mathrm{Bi}$
${ }^{159} \mathrm{~Tb}$
${ }^{197} \mathrm{Au}$
${ }^{9} \mathrm{Be}+{ }^{208} \mathrm{~Pb}$

Theory (quantum mechanic):

Projectiles of two-fragment

Continuous energy label $\Longrightarrow \quad$ Infinite set of equations (even with truncation)

Solution: discretize the continuum

CDCC method with bins

$\left\{\varphi_{\varepsilon}\right\} \Longrightarrow\left\{\varphi_{i}\right\}$

Bins adopted for ${ }^{7} \mathrm{Li}$
Reduces to a standard CC problem, (finite number of coupled equations)

- Project angular momentum
- Solve CC equations, get S-matrices and radial w.f.

Calculation of fusion cross sections

- Indirect calculation:

$$
\sigma_{\mathrm{R}}=\frac{\pi}{k^{2}} \sum_{l}(2 l+1)\left[1-\left|S_{0 l}(E)\right|^{2}\right] \Longrightarrow \sigma_{\mathrm{F}}=\sigma_{\mathrm{R}}-\sum_{\alpha \neq 0} \sigma_{\alpha}
$$

- Direct calculation using radial wave functions

$$
\sigma_{\mathrm{F}}=\frac{k}{E} \sum_{\alpha \alpha^{\prime}=1}\left\langle\psi_{\alpha}\right| W_{\alpha, \alpha^{\prime}}^{1}+W_{\alpha, \alpha^{\prime}}^{2}\left|\psi_{\alpha^{\prime}}\right\rangle
$$

Fusion Estimations: classical picture

Hagino et al., NPA 238, 475 (2004), Dasgupta et al., PRC 66, 041602 (2002),

- Classical picture with stochastic parameters.

Fusion Estimations: semi-classical models

* Marta et al., PRC 89, 034625 (2014), Kolinger et al., PRC 98, 044604 (2018)

- Classical trajectory
- Intrinsic dynamic: time dependent Schrodinger equation
- Fusion: tunnelling trough the barrier

The method of Hagino, Vitturi, Dasso and Lenzi (HVDL)
 Hagino et al., PRC 61, 037602 (2000)
 A. Diaz-Torres and I. J. Thompson, PRC 65, 024606 (2002).

- P-T imaginary potential (instead of $\left.W^{(1)}+W^{(2)}\right)$

$$
W(\mathbf{R}, \mathbf{r})=W^{1}\left(r_{1}\right)+W^{2}\left(r_{2}\right) \rightarrow W(R)=W_{\alpha} \delta_{\alpha, \alpha^{\prime}}
$$

Then, $\quad \sigma_{\mathrm{TF}}=\frac{k}{E} \sum_{\alpha=1}^{N}\left\langle\psi_{\alpha}\right| W_{\alpha}\left|\psi_{\alpha}\right\rangle=\sum_{\alpha=1}^{N} \sigma_{\alpha}$

Or, $\quad \sigma_{\mathrm{TF}}=\sigma_{\mathrm{B}}+\sigma_{\mathrm{C}}$

With $\sigma_{\mathrm{B}}=\frac{k}{E} \sum_{\alpha \in \text { bound }}\left\langle\psi_{\alpha}\right| W_{\alpha}\left|\psi_{\alpha}\right\rangle$
Contributions from from bound channels
And $\sigma_{\mathrm{C}}=\frac{k}{E} \sum_{\alpha \in \text { cont. }}\left\langle\psi_{\alpha}\right| W_{\alpha}\left|\psi_{\alpha}\right\rangle$
From continuum channels (bins)

Basic Assumption: $\quad \sigma_{\mathrm{CF}}=\sigma_{\mathrm{B}}, \sigma_{\mathrm{ICF}}=\sigma_{\mathrm{C}}$

Limitation: works for a fragment much heavier than the other

$$
{ }^{11} \mathbf{B e}\left({ }^{10} \mathrm{Be}-\mathrm{n}\right)+{ }^{208} \mathbf{P b}
$$

CF
Absorption in B space

ICF
Absorption in C space

Works fine !

Basic Assumption: $\quad \sigma_{\mathrm{CF}}=\sigma_{\mathrm{B}}, \sigma_{\mathrm{ICF}}=\sigma_{\mathrm{C}}$

Limitation: works for a fragment much heavier than the other

$$
{ }^{7} \mathbf{L i}\left({ }^{4} \mathrm{He}-{ }^{3} \mathrm{H}\right)+{ }^{209} \mathbf{B i}
$$

CF
Absorption in B space

ICF ???
Absorption in C space

Does not work!

Indirect determination of CF using the spectator model*

* Lei and Moro, PRL 122, 042503 (2019)

Extract $\sigma_{C F}$ from the relation:

$$
\sigma_{\mathrm{R}}=\sigma_{\mathrm{CF}}+\sigma_{\mathrm{inel}}+\sigma_{\mathrm{EBU}}+\sigma_{\mathrm{NBU}}^{(1)}+\sigma_{\mathrm{NBU}}^{(2)}
$$

- σ_{R} from CDCC calculation or opt. model analysis
- $\sigma_{\text {inel }}$:from standard CC calculation (only bound channels)
- $\sigma_{E B U}$: from CDCC calculation:
- $\sigma_{\text {NEB1 }}, \sigma_{\text {NEB2 }}$: from inclusive spectator- participant model (IAV)

Quantum mechanical methods

1. Indirect determination of CF using the spectator model*

Nice model, ... but cannot evaluate ICF

Other methods found in the literature

- S. Hashimoto et al., Prog. Theor. Phys. 122, 1291 (2009): Radial integrals of the imaginary potentials with CDCC w.f.s over the coordinates of the fragments, r1 and r2. They picked contribution from proper regions to determine individual cross sections for each fusion process. ICF the neutron and the proton in the $d+{ }^{7} \mathrm{Li}$ collision.
- M. Boseli and Diaz-Torres, JPG 41 (2014) 094001, PRC 92 (2015) 044610: Used position projection operators to describe the time-evolution of wave packets. Used to estimate CF and ICF cross sections for the ${ }^{6} \mathrm{Li}+{ }^{209} \mathrm{Bi}$ system. The method is promising but so far it has not been used in realistic calculations involving weakly bound projectiles.
- V.V. Parkar et al., PRC 94, 024606 (2016): Performed separate CDCC calculations with short-range W to determine CF, ICF, TF (no self-consistent) ${ }^{6,7} \mathrm{Li}+{ }^{209} \mathrm{Bi},{ }^{198} \mathrm{Pt}$

A new QM method to evaluate CF and ICF*

Instead of absorption of the cm of the projectile:
$W(\mathbf{R}, \mathbf{r})=W^{1}\left(r_{1}\right)+W^{2}\left(r_{2}\right) \rightarrow W(R)=W_{\alpha} \delta_{\alpha, \alpha^{\prime}}$
Individual absorption of each fragment:
$W(\mathbf{R}, \mathbf{r})=W^{1}\left(r_{1}\right)+W^{2}\left(r_{2}\right), \quad W_{\alpha, \alpha^{\prime}} \neq W_{\alpha}$
Assumption:
W^{i} does not connect spaces B and C

$$
\begin{equation*}
\mathbb{W}^{(i)}\left(r_{i}\right)=\frac{W_{0}}{1+\exp \left[\left(r_{i}-R_{\mathrm{w}}\right) / a_{\mathrm{w}}\right]}, \quad i=1,2, \tag{44}
\end{equation*}
$$

with the following parameters:

$$
W_{0}=50 \mathrm{MeV}, \quad R_{\mathrm{w}}=1.0\left[A_{i}^{1 / 3}+A_{\mathrm{T}}^{1 / 3}\right] \mathrm{fm} ; \quad a_{\mathrm{w}}=0.2 \mathrm{fm} .
$$

Contribution from the B-space:

(as in the HVDL method)

$$
\sigma_{\mathrm{B}}=\frac{k}{E} \sum_{\alpha \in \text { bound }}\left\langle\psi_{\alpha}\right| W^{1}\left(r_{1}\right)+W^{2}\left(r_{2}\right)\left|\psi_{\alpha}\right\rangle
$$

Contribution from channels in the continuum to TF (here is the difference to HVDL)

$$
\sigma_{\mathrm{C}}=\frac{k}{E} \sum_{\alpha \alpha^{\prime} \in C}\left[\left\langle\psi_{\alpha}\right| W_{\alpha, \alpha^{\prime}}^{1}\left(r_{1}\right)\left|\psi_{\alpha}^{\prime}\right\rangle+\left\langle\psi_{\alpha}\right| W_{\alpha, \alpha^{\prime}}^{2}\left(r_{2}\right)\left|\psi_{\alpha^{\prime}}\right\rangle\right]
$$

Performing ang. mom. projection and the summing over α and α^{\prime} (in C),

$$
\sigma_{\mathrm{C}}=\frac{\pi}{k^{2}} \sum_{J}(2 J+1)\left[P^{1}(J)+P^{2}(J)\right]
$$

$p^{(i)}(J)=$ abs. probability of fragment i in the C-space

ICF (ICF1, ICF2), SCF cross sections

$$
\begin{aligned}
\sigma_{\mathrm{ICF} 1} & =\frac{\pi}{k^{2}} \sum_{J}(2 J+1) P^{1}(J)\left[1-P^{2}(J)\right] \\
\sigma_{\mathrm{ICF} 2} & =\frac{\pi}{k^{2}} \sum_{J}(2 J+1) P^{2}(J)\left[1-P^{1}(J)\right]
\end{aligned}
$$

$$
\sigma_{\mathrm{ICF}}=\sigma_{\mathrm{ICF} 1}+\sigma_{\mathrm{ICF} 2}
$$

ICF (ICF1, ICF2), SCF cross sections

$$
\sigma_{\mathrm{SCF}}=\sigma_{\mathrm{C}}-\sigma_{\mathrm{ICF}}=\frac{\pi}{k^{2}} \sum_{J}\left(2 P^{1}(J) \times P^{2}(J)\right)
$$

$$
\sigma_{\mathrm{CF}}=\sigma_{\mathrm{DCF}}+\sigma_{\mathrm{SCF}}
$$

$$
\sigma_{\mathrm{TF}}=\sigma_{\mathrm{CF}}+\sigma_{\mathrm{ICF}}
$$

Application: Fusion cross sections in ${ }^{7} \mathbf{L i}+{ }^{209} \mathbf{B i}$

$$
{ }^{4} \mathrm{He}+\mathrm{t} \quad \mathrm{BE}=2.47 \mathrm{MeV}
$$

Procedure:

- Perform CDCC calculations running FRESCO, with options to export intrinsic and radial w.f.
- !!! We need radial w.f. converged inside V_{B} too. Hard task!!!
- Use them in the the angular momentum projected expressions for the cross sections (Code CF-ICF, unpublished)
- J. Rangel, M.R. Cortes, J. Lubian, L.F.Canto (Phys. Let. B, 803-2020)
- M.R Cortes, J. Rangel. J.L. Ferreira, J. Lubian., L.F Canto (PRC 102, 06428 (2020)

${ }^{7} \mathrm{Li}+{ }^{209} \mathrm{Bi}$ fusion - theory vs. experiment*

- TF and CF predictions are in excellent agreement with data below V_{B} up to $E \sim 36 \mathrm{MeV}$. CF is well described in the whole energy inertval
- Predictions for TF above ~ 36 MeV overestimate the experiment. But... the 4 data points with highest energies are only lower bounds (according to the authors of the experiment)

Decay schemes of nuclei produced by ICF

ICF ${ }^{4} \mathrm{He}$

- ${ }^{209}$ Po is the decay chain of both ICF processes
- Contribution from ${ }^{209}$ Po is not detected
- Estimates with PACE: ${ }^{209}$ Po is important above 36 MeV .
- Above $E_{\text {c.m. }} \sim 36 \mathrm{MeV}$, data is only a lower bound

- Excellent agreement where all relevant decay channels are measured
- Consistent with data where they give a lower bound

Specroscopic factors for bound-continuum couplings

- Not relevant for qualitattive studies
- Relevant for quantitative studies
- Lower S=> higer CF , lower ICF
- No microscopic results fro S in cluster models => free parameter
S. Watanabe et al. PRC 92, 044611 (2015) suggested cluster configuration of $\sim 70 \%$ for ${ }^{6,7}$ Li.

We used $\mathrm{S}=0.8$ in our calculations for ${ }^{7} \mathrm{Li}$

Cluster model for weakly bound nuclei: Static effect

Potencial	$R_{\mathrm{B}}(\mathrm{fm})$	$V_{\mathrm{B}}(\mathrm{MeV})$	$\hbar \omega(\mathrm{MeV}$
V_{PT}	11.4	29.4	4.3
V_{00}	11.9	28.3	4.0

Cluster model for weakly bound nuclei: Static effect

Effects of the breakup couplings

- TF almost identical do 1-channel
- Bu-couplings redistribute $\sigma_{T F}$ between CF and ICF, without changing the sum

Effects of the breakup couplings

Below V_{B}

- CF is suppressed - weaker suppression as E decreases below V_{B} (28.2 MeV)
- ICF becomes larger than CF for $\mathrm{E}<32 \mathrm{MeV}$
- Owing to ICF, TF is enhanced below V_{B} (lighter fragments fuses easily)

Complete fusion

CF theory vs experimental data

$V_{\text {PT }}$ - without cluster good agreement with the data
V_{00} - with cluster

${ }^{7} \mathbf{L i}+{ }^{198} \mathbf{P t}$ fusion - theory vs. experiment*

$$
W_{00}(R)=\int d^{3} \mathbf{r}\left|\phi_{0}(\mathbf{r})\right|^{2}\left[\mathbb{W}^{(1)}\left(r_{1}\right)+\mathbb{W}^{(2)}\left(r_{2}\right)\right]
$$

43

* A. Shrivastava, et. Al, Phys. Rev. Lett. , 103:232701,(2009)

Reduced CF

$$
F_{\mathrm{th}}^{00}(x) \simeq 0.58 \times F_{0}(x) ; \quad F_{\mathrm{th}}^{\mathrm{PT}}(x) \simeq 0.67 \times F_{0}(x),
$$

Different results depending pf the real potential used to reduce the data

ICF: theory versus experiment

ICF ${ }_{\text {t }}$ very well described
ICF $_{\alpha}$ overpredicted. Why? Problem of the theory, of the dat?????

${ }^{6} \mathrm{Li}$ - preliminary results

$S=0.9$

${ }^{197} \mathrm{Au}$

CF - well described
ICF - no data

${ }^{124} \mathrm{Sn}$

$$
\begin{array}{ll}
\text { CF - well described } & \text { ICF }_{t}-\text { well dewcribed } \\
& \text { ICF }_{\alpha} \text { - overestimatd }
\end{array}
$$

Conclusions

- We have proposed a new quantum mechanical method to evaluate CF and ICF in collisions of weakly bound nuclei
- The method was applied to the ${ }^{7} \mathrm{Li}+$ heavy target system and the results were compared with the data.
- Considering that our calculations use standard interaction and have no free parameters, the agreement between theory and experiment is excellent
- Calculations of other systems are in progress

Future plans

- Study other systems (e.g. ${ }^{6} \mathrm{Li}$ on heavy targets, ${ }^{6,7} \mathrm{Li}$ on medium mass targets)
- Include spectroscopic factors* (cluster structure of g.s. is just an approximation)
- Include target excitation (important in fusion of deformed targets)*
- Include core-excitations*
- Extension to 4-body CDCC (ex: ${ }^{9} \mathrm{Be}$ collisions)*
- Include transfer channels ??????
- Include BU triggered by transfer ?????
* Requires another version of the CDCC code

Team members

- Luiz Felipe Canto (UFRJ)
- Jeannie rangel Borges (UFF)
- Jonas Leonardo Ferreira (UFF)
- Mariane Rodrigues Cortes (UFF)

Thank you :D

