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Two-particle transfer as a signature of shape phase
transition and/or shape coexistence




Two-particle transfer reaction are the traditional tools to study
“dynamically” the effect of the pairing interaction, with special

focus on the occurrence of collectivity in the ground state and

the enhancement of transfer probabilities with respect to unperturbed
non-collective states. The basic ndive idea is that the two-particle transfer
cross section is proportional to the

Pair strength
|P*|2 = IZJ [cx*J-a*J-]ooI2 (or similar for pair removal)
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Basic problem with two-particle transfer reactions: the proper reaction
mechanism to extract a quantitative estimate of the pairing enhancement.
In fact the reaction mechanism associated with pair transfer is rather
complicated and the possibility of extracting spectroscopic information on
the pairing field is not obvious.

All different approaches try to reduce the actual complexity of the
problem, that is at least a four-body problem (two cores plus the two
transferred particles) o a more tractable framework.

Two lines of approach are most popular, simplified by:

A, Successive single-particle transfer,
based on the dominance of the mean field

B. Cluster transfer,
based on the dominance of the pairing interaction



A Sequential Two-step process: each step transfers one particle

Pairing enhancement comes from the coherent interference of the different
paths through the different intermediate states in (a-1) and (A+1) nuclei, due to
the correlations in initial and final wave functions

Basic idea: dominance of mean field, which provides the framework for defining
the single-particle content of the correlated wave functions. Expansion to second-

order in the transfer potential
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B

Cluster-transfer model (suggested by the close radial correlation of the pairs
and obviously dominant in the case of extremely large pairing force with respect
to mean field)

R
— Initial and final cluster wave
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‘ the two-particle wave functions
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N the relative motion

These overlaps also get enhanced by the coherent contributions of the different
components generated by the pairing interaction. Note, however, that the final
enhancement may be quantitatively different from the one obtained within the
sequential transfer model.



Aside from the basic problem of the reactions mechanism, a number of issues are,
in my opinion, at present very interesting (each deserving at least a full seminar):

1. two-particle transfer as a tool
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3. Interplay of T=0 and T=1 pair transfer

BUT WE MOVE NOW TO THE PROBLEM OF PHASE TRANSITIONS



The pairing response is characterized by the pairing phase

(normal or superfluid) and by the shape phase (e.g. spherical or
deformed). Therefore it will be a clear signature of phase transitions
(in addition to the standard signatures, as E,/E,, B(E2), efc) in
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Phase transition from "normal” to “superfluid” phases:
characteristic behavior of the pair transfer matrix element
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Strength

A calculation with Skyrme-HFB for Sn isotopes
with a zero-range density-dependent pairing interaction
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In a similar way pair-transfer probabilities show characteristic
behaviors in correspondence of shape phase transitions

For simplicity we move within the framework of the
Interacting Boson Model, but the results are similar within
other microscopic models

The IBM does not explicitly
use the fermion degrees of
freedom. From mapping
procedure the "form" of the
two-particle addition operator
is simply assumed as s*,
neglecting higher-order terms,
as s*s*s or [d*d*],s or [d*s*d],
etc ...
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Schematic case: Spherical shape up to N=3, axial deformation from N onwards
OBS : N number of pairs

Pairing strength = |<N+1|s+|N>|?

to the ground state to the beta vibration
g8 > 08 gs -> beta vibration
\ () T ] T I -'] l I I I T l T | I I T l I 3/
UEs).” i
1G). 5
g 1
pairing R
strength ? 0
g9 2
-1
B —! | 4 [F o T 9Nl T T I B S O T
0 2 4 6 8 0 2 4 \6 8 10
P N \ N\
. v . 18
spherical valence pairs valence Rairs
deformed \

\
\
\
\

There is a clear signal at the phase transition



In more details

Example: L=0 pair transfer in a phase transition
from spherical to axial deformation

(from U(B) to SU(3) in algebraic language)

Energy surfaces
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phase transition)
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Obs: fragmentation of the pairing strength in
correspondence to phase transitions along an isotope chain
(in this case chosen to take place at N=8)

Increasing
valence bairs
Spherical to gamma-unstable . 0 oo hob |
Us)->06) -°C 0 ok
2nd order Al ue) 0, $ L 00) 3
14 Lo 0 E
( | | |()7 | ] I | —Iﬁ | | 1 h IBl | | I_
Spherical to axial deformation
U()->SU@) _ 0, SU@B3)-
1st order 2, 0, 0 1 E
] 0.0 ] —
- - : 0.0, O N
0 | | | | | | | | | | | | | | | | | | J.J | | | | | Il | | | | I_
Ex E, E, E,

fragmentation of the pairing strength



pair transfer intensities
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A real case: Samarium isotopes
General IBM Hamiltonian with parameters fitted to each isotope
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From pair strength to cross sections
(within a full microscopic approach, with simultaneous and
successive contributions, and with spectroscopic two-
neutrons amplitudes provided by IBM structure calculations)
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Alternative scenario: Shape coexistence.

It is a very broad phenomenon that supposes the presence of
states with very different shapes or deformation, for instance
vibrational-like and deformed, in a narrow excitation energy range.
The existence of different configurations is associated with
particle-hole (np-nh) excitations across the shell closure. Typically,
vibrational-like states correspond to Op-Oh excitations while the
deformed ones are associated to 2p-2h excitations.

When both families of states cross in the ground state, it
experiences an abrupt change of deformation with consequences in
the systematics of the two-neutron separation energy, the
quadrupole moment or the B(E2: 2*; — 0%; ) values.

QPT and shape coexistence show therefore similar systematics and
in many cases it is not simple to disentangle which one is the
responsible of the rapid onset of deformation.

Can two-particle transfer processes help in clarifying the picture?



Schematic scenario: two-level shape co-existence, for example of
a spherical and a deformed state within the same nucleus
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A simple model: along the isotope chain a sharp inversion of the structure
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As in the previous situation of the standard phase transition a
clear discontinuity appears at the critical point. However, the
pair strength is always practically concentrated in a single state,
without the fragmentation illustrated in the case of the phase
transition



Another case: two-level shape-coexistence with a smoother transition
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Transfer operator for pair removal : S + s" (one can destroy a particle pair
or create a hole pair)
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A more detailed description: approach based on the IBM with extension
to configuration mixing (IBM-CM).

The standard IBM is modified to deal also with particle-hole excitation, e.g.,
2p-2h excitations. In this case the original Hilbert space based on the N valence
bosons is enlarged to [N] @ [N + 2]. The [N + 2] space corresponds to considering
two extra bosons that come from the promotion of a pair of protons across the
corresponding shell closure, generating an extra boson made of holes and another

made of particles.

The considered Hamiltonian for the case of IBM-CM is

H = Hu* Hae + A+ Vi
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The parameters of the Hamiltonians are varied to fit each nucleus .
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Zirconium isotopes: a case of shape-coexistence with crossing
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The same case in more details (shape phase transition / shape

coexistence in Zr isotopes) with full microscopic wave functions
coming from Monte Carlo large-scale shell model calculations and
“proper” reaction model
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relevant 2-particle spectroscopic amplitudes
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Calculation of two-particle transfer reactions using:
sequential model for the reaction mechanism
one- and two-particle spectroscopic amplitudes from the Tokyo group
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Mercury isotopes: a case of shape-coexistence
with no crossing and no mixing
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Platinum isotopes: a case of shape-coexistence with crossing and large
(but stable) mixing, and no significant signal in the pair strength
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Conclusions:

Pairing response (tested in two-particle transfer reactions but also in other
dynamical processes involving pairs of particles) gives strong constraints on
nuclear wave functions. The effect is amplified in correspondence of critical
situations associated with shape phase transitions or crossing with an
intruder state, with "abnormal” population of excited O+ states and weakening
of the ground state transition. In spite of this clear signal, however, it
seems difficult to clearly disentangle the shape coexistence picture from

the QPT one only using the two-neutron transfer intensity.
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The situation is complicated for the large number of O+ states
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