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Two-particle transfer as a signature of shape phase  
transition and/or shape coexistence 
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Two-particle transfer reaction are the traditional tools to study 
“dynamically” the effect of the pairing interaction, with special 
focus on the occurrence of collectivity in the ground state and 
the enhancement of transfer probabilities with respect to unperturbed 
non-collective states.  The basic naïve idea is that the two-particle transfer  
cross section is proportional to the   

Typical pairing response 
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Basic problem with two-particle transfer reactions: the proper reaction 
mechanism to extract a quantitative estimate of the pairing enhancement.  

In fact the reaction mechanism associated with pair transfer is rather 
complicated and the possibility of extracting spectroscopic information on 

the pairing field is not obvious.  
All different approaches try to reduce the actual complexity of the 

problem, that is at least a four-body problem (two cores plus the two 
transferred particles) to a more tractable framework. 

Two lines of approach are most popular, simplified by: 

A, Successive single-particle transfer, 
based on the dominance of the mean field 

B. Cluster transfer, 
based on the dominance of the pairing interaction 



                   Sequential two-step process: each step transfers one particle 

Pairing enhancement comes from the coherent interference  of the different 
paths through the different intermediate states in (a-1) and (A+1) nuclei, due to 
the correlations in initial and final wave functions 

Basic idea: dominance of mean field, which provides the framework for defining 
the single-particle content of the correlated wave functions.  Expansion to second-
order in the transfer potential 

Simultaneus  +  Sequential  + not-orthogonality 
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B 

Cluster-transfer model (suggested by the close radial correlation of the pairs 
and obviously dominant in the case of extremely large pairing force with respect 
to mean field) 

0s 0s 
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R 

Initial and final cluster wave  
functions are obtained by 
taking the overlap between 
the two-particle wave functions 
and a 0s wave function for 
the relative motion 

These overlaps also get enhanced by the coherent contributions of the different  
components generated by the pairing interaction.  Note, however, that the final 
enhancement may be quantitatively different from the one obtained within the  
sequential transfer model.  



Aside from the basic problem of the reactions mechanism, a number of issues are,  
in my opinion, at present very interesting (each deserving at least a full seminar): 

            1.  two-particle transfer as a tool  
                for the study of the pairing at  
                the drip lines and of the role  of  
                continuum states 

            2. the search for high-lying  
                pairing vibrations  
                (Giant Pairing Vibration) 

            3.  Interplay of T=0 and T=1 pair transfer 

BUT WE MOVE NOW TO THE PROBLEM OF PHASE  TRANSITIONS 
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The pairing response is characterized by the pairing phase  
(normal or superfluid) and by the shape phase (e.g. spherical or  
deformed).  Therefore it will be a  clear signature of phase transitions 
(in addition to the standard signatures, as E4/E2, B(E2), etc) in 
both the 

pairing degree of freedom 
shape degree of freedom 

Shape Transitions Pairing Transitions 
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C. Comparison between quasiparticle and
canonical formulation

In Fig. 1, the removal (or addition) probabilities ob-
tained by using Eqs. (6) and (15) are compared for the
Sn isotopic chain and the two different employed pair-
ing interactions. For the surface case, the nucleus 136Sn
corresponds to the drip line nucleus (the two-neutron sep-
aration energy changes its sign going from 136Sn to 138Sn
in this case). As can be seen in this figure, the two sets
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Figure 1: Comparison of the removal (addition) probability
obtained by using Eq. (6) and for the mixed pairing case (blue
solid line) and the pure surface case (red dashed line). The
results obtained using Eq. (15) are also shown for the mixed
(filled circles) and pure surface (blue filled squares) case

of results can almost be superposed one to the other, as
it should be if a full basis was used in both formulations.
The small difference is due to the fact that in both cases
the actual calculation is made with a set of states be-
low a certain cutoff. The cutoff used in the quasiparticle
space case cannot be easily connected to the cutoff in
canonical single-particle space. Therefore, the inevitable
slightly different cutoff choices lead to the (very) small
difference.
The surface-peaked pairing interaction systematically

provides a larger probability. We notice that the transfer
probability is zero in this approximation for the magic
nuclei 100Sn and 132Sn due to the absence of static pairing
correlation in these cases.

D. Interpretation of pair-transfer probability

The canonical basis formulation of the pair transfer
gives an interesting new insight in the interpretation of
the transfer probability. Indeed, the differences between
the pair-transfer probabilities which are obtained with
different pairing forces are usually interpreted as a con-
sequence of the radial features of the quasiparticle wave
functions that appear in the integral of Eq. (6). One may

wonder whether this is an artificial result depending on
the technical details of the HFB calculations, where in-
tegrals of the components of the quasiparticle wave func-
tions are done to evaluate the probability. However, in
Eq. (15), the radial dependence of the canonical-state
wave functions is integrated out and completely disap-
pears. We can thus argue that the differences in the tran-
sition probabilities are not artificial and certainly con-
tain genuine physical effects. These effects that lead to a
larger transfer probability for the case of a pure surface
interaction with respect to the case of a mixed interac-
tion could be seen (in the canonical basis formulation
where the probability is expressed in terms of occupa-
tion numbers) as due to a different neutron occupancy
fragmentation around the Fermi energy. The neutron
occupation numbers around the Fermi energy are more
fragmented in the case of a surface pairing interaction;
in this latter case the Fermi energy is also closer to zero
meaning that the system is less bound. This indicates
that the last occupied states are closer to the continuum.
This is illustrated in the upper panel of Fig. 2 where the
neutron Fermi energy λn is displayed as a function of A
for both interactions. To estimate in a systematic way
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Figure 2: Upper panel: Evolution of the neutron Fermi energy
for the tin isotopic chain for mixed (filled circles) and surface
(filled squares) pairing case. Lower panel: evolution of the
entropy for the same nuclei.

the fragmentation of the single-particle occupancies, the
single-particle entropy, defined as

S = −kB
∑

i

(ni lnni + (1− ni) ln(1− ni)) , (16)

Different 
forms of the 
pairing 
interaction 



In a similar way pair-transfer probabilities show characteristic 
behaviors in correspondence of shape phase transitions  

For simplicity we move within the framework of the  
Interacting Boson Model, but the results are similar within 
other microscopic models 

The IBM does not explicitly  
use the fermion degrees of  
freedom.  From mapping  
procedure the “form” of the  
two-particle addition operator  
is simply assumed as s+,  
neglecting higher-order terms, 
as s+s+s  or [d+d+]0s  or [d+s+d]0  
etc ……  

OBS: See OAI mapping 



valence pairs valence pairs spherical deformed 

pairing 
strength 

There is a clear signal at the phase transition 

(from U(5) to SU(3) in algebraic language) Pairing strength = |<N+1|s+|N>|2 

Schematic case: Spherical shape up to N=3, axial deformation from N onwards 
   OBS : N number of pairs 



In more details 
Example: L=0 pair transfer in a phase transition 
from spherical to axial deformation  
(from U(5) to SU(3) in algebraic language) 

Variational Hamiltonian 

H (α) = (1-α) HU(5) + α HSU(3) 

varying the parameter α  
from zero (sphericity) to one 
(axial deformation) and  
empirically connecting α  
with the mass number N  
along an isotope chain 

U(5)	

SU(3)	

critical point 

(first-order  
phase transition)	

Energy surfaces  
     E(β,γ=0) 

αcrit≈ 16/34 ≈ 0.5 



Obs: fragmentation of the pairing  strength in  
        correspondence to phase transitions along an isotope chain 
                                  (in this case chosen to take place at N=8) 

Increasing 
number of 
valence pairs 

R. Fossion Workshop Nuclear Physics into the 21st Century

Fragmentation of the transfer strength
in the transition region

R. Fossion, C.E. Alonso, J.M. Arias, L. Fortunato and A. Vitturi, Phys. Rev. C76 (2007) 014316.

U(5) -> O(6)
2nd order

U(5) -> SU(3)
1st order

Ex Ex Ex Ex 

fragmentation of the pairing strength 

Spherical to gamma-unstable 

Spherical to axial deformation 
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FIG. 1. Partial spectra of Hg (panel (a)), Pt (panel (b)), Zr (panel (c)), and Sm isotopes (panel

(d)).

II. THE FORMALISM

In order to compute two-nucleon transfer intensities we will use here as framework the

IBM [29]. The model was proposed as a symmetry dictated approximation of the shell

model, assuming that the relevant degrees of freedom are pairs of nucleons coupled either

to angular momentum L = 0 (S pairs) or to angular momentum L = 2 (D pairs), which

are considered as bosons as further approximation. The number of active pairs of nucleons

regardless its particle or hole nature or proton or neutron character is denoted as N . Very

soon the IBM was modified to deal also with particle-hole excitation, e.g., 2p-2h excitations

[30, 31]. In this case the original Hilbert space is enlarged to [N ] ⊕ [N + 2]. The [N + 2]

space corresponds to considering two extra bosons that come from the promotion of a pair

of protons across the corresponding shell closure, generating an extra boson made of proton

holes and another made of proton particles.

For the case of the IBM without configuration mixing a simplified Hamiltonian called

extended consistent-Q Hamiltonian (ECQF) [32, 33] will be considered. This Hamiltonian

has been used to describe successfully even-even medium- and heavy-mass nuclei. The
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FIG. 9. The same as Fig. 7 but for Sm isotopes. IBM results taken from [42].

IV. CONCLUSIONS

In this work, we have calculated the value of the (t,p) two-neutron transfer intensities

taking advantage of previous systematic studies using the IBM with and without configura-

tion mixing in the regions of Zr, Pb, and Sm which provide the corresponding wave functions

of the 0+ low-lying states in each isotope chains and then allow to calculate, with no ad-

ditional tuning, the value of the intensity. Our main goal was to check whether or not the

two-neutron intensity is a reliable observable to distinguish between the existence of shape

coexistence and a QPT as previously suggested in [15, 16], where it was observed than in

schematic calculations the two-neutron intensities suffer abrupt changes in both cases, but

the intensity is much more fragmented in the presence of a quantum phase transition than

for shape coexistence.

The first studied chain of isotopes has been Zr, using both approaches IBM-CM and

IBM with a single configuration. In both cases it is observed a rapid change in the (t,p)
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From pair strength to cross sections 
(within a full microscopic approach, with simultaneous and 

successive contributions, and with spectroscopic two-
neutrons amplitudes provided by IBM structure calculations) 

Second-order DWBA 
for ASm(p,t) A-2Sm 

Optical potentials for 
proton,deuteron and  
triton BG,DG and XL 

Cross section at θcm=28o 



Alternative scenario: Shape coexistence.  

It is a very broad phenomenon that supposes the presence of 
states with very different shapes or deformation, for instance 

vibrational-like and deformed, in a narrow excitation energy range. 
The existence of different configurations is associated with 

particle-hole (np-nh) excitations across the shell closure. Typically, 
vibrational-like states correspond to 0p-0h excitations while the 

deformed ones are associated to 2p-2h excitations. 
When both families of states cross in the ground state, it 

experiences an abrupt change of deformation with consequences in 
the systematics of the two-neutron separation energy, the 

quadrupole moment or the B(E2: 2+
1 → 0+

1 ) values. 

QPT and shape coexistence show therefore similar systematics and 
in many cases it is not simple to disentangle which one is the 

responsible of the rapid onset of deformation. 

Can two-particle transfer processes help in clarifying the picture? 



N particle  
  pairs 
0 hole  
  pairs 

U(5) hamiltonian 
(spherical) 

N+1 particle  
  pairs,  
1 hole pair 
(2p-2h exc): 
total N+2 
pairs 

SU(3) 
hamiltonian 
(deformed) 

|N>U(5) 

Schematic scenario: two-level shape co-existence, for example of  
a spherical and a deformed state within the same nucleus 

|0+
gs,N> = α |N>U(5) + β |N+2>SU(3)   

|0+
exc,N> = - β |N>U(5) + α |N+2>SU(3)   

Mixing of two configurations, 
with mixture changing along 
the isotope chain 

|N+2>SU(3) 



A simple model: along the isotope chain a sharp inversion of the structure  
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As in the previous situation of the standard phase transition a 
clear discontinuity appears at the critical point. However, the 
pair strength is always practically concentrated in a single state, 
without the fragmentation illustrated in the case of the phase 
transition 

Another case: crossing between 4 and 5 pairs 
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A more detailed description: approach based on the IBM with extension  
to configuration mixing (IBM-CM). 

The standard IBM is modified to deal also with particle-hole excitation, e.g., 
2p-2h excitations.  In this case the original Hilbert space based on the N valence 
bosons is enlarged to [N] ⊕ [N + 2]. The [N + 2] space corresponds to considering 
two extra bosons that come from the promotion of a pair of protons across the 
corresponding shell closure, generating an extra boson made of holes and another 
made of  particles. 

The considered Hamiltonian for the case of IBM-CM is 

                H    =    HN  +  HN+2  +  Δ  +   Vmix 

Hamiltonian  
in the normal 
sector  

Hamiltonian  
in the intruder 
sector  

mixing between the 
two sectors 

energy needed to promote a  
pair across the shell closure 

The parameters of the Hamiltonians are varied to fit each nucleus .  
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II. THE FORMALISM

In order to compute two-nucleon transfer intensities we will use here as framework the

IBM [29]. The model was proposed as a symmetry dictated approximation of the shell

model, assuming that the relevant degrees of freedom are pairs of nucleons coupled either

to angular momentum L = 0 (S pairs) or to angular momentum L = 2 (D pairs), which

are considered as bosons as further approximation. The number of active pairs of nucleons

regardless its particle or hole nature or proton or neutron character is denoted as N . Very
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holes and another made of proton particles.
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FIG. 2. (t,p) transfer intensities from 0+1 in the parent nucleus to 0+i in the daughter for Zr isotopes

given in arbitrary units using the IBM-CM Hamiltonian provided in [23]. In panel (a) it is depicted

the value of the (t,p) transfer intensity. Panel (b) corresponds to the unperturbed energy of the

[N] and [N+2] band-heads. Panel (c) shows the regular content of the states 0+1 and 0+2 in each

isotope.

of the intensities to the 0+1 and the 0+2 states cross at the point A = 98, precisely where

the regular and the intruder configurations also cross (panel (b)). This latter fact is also

manifested in the interchange of the regular content of the states 0+1 and 0+2 (panel (c)).

The relevant observation is that at this point (between A = 98 and A = 100) I(0+1 (A) →

0+1 (A+2)) < I(0+1 (A) → 0+2 (A+2)) while the opposite holds for the rest of cases. This fact

is tightly connected with the use of two configurations as it will be seen in section IIIB 1

where only a single configuration is considered. To understand why the intensity into states

other than the ground state is roughly zero, we have to resort to the argument given at the

end of section II where we have seen that as the structure of the involved states in parent

and daughter nuclei are different (one normal and the other intruder) the intensities vanish.

10

Pair strength 

E(0+
1 ,0+

2) 

Regular 
content 

02
+
 

Zirconium isotopes: a case of shape-coexistence with crossing  

The cancellation of the transfer intensity happens for states that either belong to different

sectors (regular or intruder), for those with different phonon structure, e.g., different number

of phonons in a vibrational nucleus, or having phonons of different nature in a well-deformed

one. In fact, the (t,p) transfer intensity is always zero for states other than 0+1,2, i.e., the

intensity is barely fragmented.

0 1
+

0 +
2 Zr    transfer A           A+2

96 98 100 102 104A 94 106

FIG. 3. Schematic representation for Zr isotopes of the relative position of the two first 0+ states

and of the (t,p) transfer intensities connecting them (the width of the arrow is proportional to the

value of the intensity). States with the same color and connected with dotted lines own the same

structure.

In Fig. 3, we depict schematically how the (t,p) two-neutron transfer operator connects

states with similar structure and how they cross for A = 98−100 assuming that states with

a similar structure (same color), are strongly connected. What is shown in Fig. 2a is just

the manifestation of the schematic configuration crossing represented in Fig. 3. All along

the isotope chain, two configurations coexist and they cross between A = 98 and A = 100.

Thus, the transfer is large between vibrational ground states for A < 98 (blue lines), and

between deformed ones for A > 100 (red lines). However, at the crossing point, i.e., between

A = 98 and A = 100, the corresponding ground states have different shape (structure),

spherical in A = 98 and deformed in A = 100, and consequently there is a drop down in the

intensity of the two-nucleon transfer intensity between the ground states.

It is worth to mention a two-level mixing calculation for light Zr isotopes [36], namely

90−96Zr, where the mixing amplitude is extracted considering two-neutron transfer intensities,

concluding that the mixing is moderated in 90−94Zr while small in 96Zr, which is in agreement

with the results presented here.
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First example: Shape phase transition in Zr isotopes 
 between N=58 and 60 
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FIG. 1. (Color online) (a) 2+1,2 levels, (b) 0
+ levels of Zr isotopes

as a function of N. Symbols are present theoretical results with
the shape classification as shown in the legends (see the text for
details). Solid lines denote experimental data [6–16]. Dashed
lines connect relevant results to guide the eye. The ratio between
the 4+1 and 2

+
1 levels is shown in the insert of (a) in comparison

to experiment. The lowest four 0+ levels are shown for 100Zr. (c)
B(E2; 2+ → 0+) values as a function of N. Experimental data are
from [13, 41–46]. (d) Deformation parameter β2. The values by
other methods are shown, too.

tion to the π- and ρ-meson exchange tensor force [37]. The
parameters of the central part were fixed from monopole
components of known SM interactions [37]. The T=0 part
of the VMU interaction is kept unchanged throughout this
work. The T=1 central part is reduced by a factor of 0.75
except for 1 f7/2 and 2p3/2 orbits. On top of this, T=1
two-body matrix elements for 0g9/2 and above it, includ-
ing those given by the SNBG3 interaction, are fine tuned
by using the standard method [38, 39]. The observed lev-
els of the 2+1 and 4

+
1 states of

90−96Zr and the 0+2 state of
94−100Zr are then used. Since the number of available data
is so small, this cannot be a fit but a minor improvement.
The single-particle energies are determined so as to be con-
sistent with the prediction of the JUN45 Hamiltonian, the
observed levels of 91Zr with spectroscopic factors, etc. The
present SM Hamiltonian is, thus, fixed, and no change is
made throughout all the calculations below. It is an initial
version, and can be refined for better details.
Figure 1(a) shows excitation energies of the 2+1,2 states

of the Zr isotopes, indicating that the present MCSM re-
sults reproduce quite well the observed trends. The shape
of each calculated state is assigned as spherical, prolate, tri-
axial or oblate by the method of [40], as will be discussed
later. The calculated 2+1 state is spherical for N=52-56,
while it becomes prolate deformed for N ≥58. Its exci-
tation energy drops down at N=60 by a factor of ∼6, and
stays almost constant, in agreement with experiment. The
ratio between the 4+1 and 2

+
1 levels, denoted R4/2, is de-

picted in the insert of Fig. 1(a) in comparison to experi-
ment. The sudden increase at N=60 is seen in both ex-
periment and calculation, approaching the rotational limit,
10/3, indicative of a rather rigid deformation. The R4/2 < 2
for N ≤58 suggests a seniority-type structure which stems
from the Z=40 semi-magicity.
Figure 1(b) shows the properties of 0+1,2 states. Their

shapes are assigned in the same way as the 2+ states. The
ground state remains spherical up to N=58, and becomes
prolate at N=60. A spherical state appears as the 0+4 state
at N=60 instead, as shown in Fig. 1(b). We here sketch
how the shape assignment is made for the MCSM eigen-
state. The MCSM eigenstate is a superposition of MCSM
basis vectors projected onto the angular momentum and
parity. Each basis vector is a Slater determinant, i.e., a di-
rect product of superpositions over original single-particle
states. The optimum amplitudes in such superpositions are
searched based on quantum Monte-Carlo and variational
methods [4, 20]. For each MCSM basis vector so fixed, we
can compute and diagonalize its quadrupole matrix. This
gives us the three axes of the ellipsoid with quadrupole mo-
menta Q0 and Q2 in the usual way [2]. One can then plot
this MCSM basis vector as a circle on the Potential Energy
Surface (PES) , as shown in Fig. 2. The overlap probability
of this MCSM basis vector with the eigenstate is indicated
by the area of the circle. Thus, one can pin down each
MCSM basis vector on the PES according to its Q0 and
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FIG. 2. (Color online) T-plots for 0+1,2 states of
98,100,110Zr isotopes.

Q2 with its importance by the area of the circle. Note that
the PES in Fig. 2 is obtained by constrained HF calculation
for the same SM Hamiltonian, and is used for the sake of
an intuitive understanding of MCSM results. This method,
called a T-plot [40], enables us to analyze SM eigenstates
from the viewpoint of intrinsic shape. Figure 2(a) shows
that the MCSM basis vectors of the 0+1 state of

98Zr are
concentrated in a tiny region of the spherical shape, while
its 0+2 state is composed of basis vectors of prolate shape
with Q0 ∼350 fm2 (see Fig. 2(b)). A similar prolate shape
dominates the 0+1 state of

100Zr with slightly larger Q0, as
shown in Fig.2(c). We point out the abrupt change of the
ground-state property from Fig. 2(a) to (c), and will come
back to this point later. The T-plot shows stable prolate
shape for the 0+1 state from

100Zr to 110Zr (see Fig. 2(d)).
Figure 1(c) displays B(E2; 2+1 → 0+1 ) values, with small

values up to N=58 and a sharp increase at N=60, consis-
tent with experiment [13, 41–44]. The effective charges,
(ep, en) = (1.3e, 0.6e), are used. Because the B(E2; 2+1 →
0+1 ) value is a sensitive probe of the quadrupole deforma-
tion, the salient agreement here implies that the present
MCSM calculation produces quite well the shape evolu-
tion as N changes. In addition, theoretical and experimen-
tal B(E2; 2+2 → 0+2 ) values are shown for N=54 [45] and
56. The value for N=56 has been measured by experiment,
discussed in the subsequent paper [46], as an evidence of
the shape coexistence in 96Zr. The overall agreement be-
tween theory and experiment appears to be remarkable. It
is clear that the 2+2 → 0+2 transitions at N=54 and 56 are
linked to the 2+1 → 0+1 transitions in heavier isotopes, via
2+1 → 0+2 transition at N=58.
Figure 1(d) shows the deformation parameter β2 [1]. The

results of IBM [24], HFB [28] and FRDM [32] calculations
are included, exhibiting much more gradual changes. The
MCSM values are obtained from B(E2; 2+1 → 0+1 ).
The systematic trends indicated by the 2+1 level, the ra-

tio R4/2, the B(E2; 2+1 → 0+1 ) value (or β2), and the T-plot
analysis are all consistent among themselves and in agree-
ment with relevant experiments. We can, thus, identify the
change between N=58 and 60 as a QPT, where in general
an abrupt change should occur in the quantum structure of
the ground state for a certain parameter [17, 18]. The pa-
rameter here is nothing but the neutron number N, and the
transition occurs from a “spherical phase” to a “deformed
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FIG. 3. (Color online) (a) Occupation numbers of protons and
(b) effective single-particle energies of neutrons for selected Zr
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phase”. Figure 1(b) demonstrates that the 0+1 state is spher-
ical up to N=58, but the spherical 0+ state is pushed up
to the 0+4 state at N=60, where the prolate-deformed 0

+

state comes down to the ground state from the 0+2 state at
N=58. This sharp crossing causes the present QPT. The
discontinuities of various quantities, one of which can be
assigned the order parameter, at the crossing point imply
the first-order phase transition. The shape transition has
been noticed in many chains of isotopes and isotones, but
appears to be rather gradual in most cases, for instance,
from 148Sm to 154Sm. The abrupt change in the Zr isotopes
is exceptional.
We comment on the relation between the QPT and the

modifications of the interaction mentioned above. With-
out them, the 2+1 level is still ∼0.2 MeV at N=60 close
to Fig. 1(a), while at N=58 it is higher than the value in
Fig. 1(a). Thus, the present QPT occurs rather insensitively
to the modifications, whereas experimental data can be bet-
ter reproduced by them.
We now discuss the origin of such abrupt changes. Fig-

ure 3(a) displays the occupation numbers of proton orbits
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Quantum Phase Transition in the Shape of Zr isotopes
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The rapid shape change in Zr isotopes near neutron number N=60 is identified to be caused by type II
shell evolution associated with massive proton excitations to its 0g9/2 orbit, and is shown to be a quantum
phase transition. Monte Carlo shell-model calculations are carried out for Zr isotopes of N=50-70 with
many configurations spanned by eight proton orbits and eight neutron orbits. Energy levels and B(E2)
values are obtained within a single framework in a good agreement with experiments, depicting various
shapes in going from N=50 to 70. Novel coexistence of prolate and triaxial shapes is suggested.

PACS numbers: 21.60.Cs, 21.10.-k,27.60.+j,64.70.Tg

The shape of the atomic nucleus has been one of the pri-
mary subjects of nuclear structure physics [1], and con-
tinues to provide intriguing and challenging questions in
going to exotic nuclei. One such question is the transition
from spherical to deformed shapes as a function of the neu-
tron (proton) number N (Z), referred to as shape transition.
The shape transition is visible in the systematics of the ex-
citation energies of low-lying states, for instance, the first
2+ levels of even-even nuclei: it turns out to be high (low)
for spherical (deformed) shapes [1–3]. A shell model (SM)
calculation is suited, in principle, for its description, be-
cause of the high capability of calculating those energies
precisely. On the other hand, since the nuclear shape is
a consequence of the collective motion of many nucleons,
the actual application of the SM encountered some limits
in the size of the calculation.

In this Letter, we present results of large-scale Monte
Carlo Shell Model (MCSM) calculations [4] on even-even
Zr isotopes with a focus on the shape transition from N =
50 to N = 70, e.g. [5]. Figure 1(a) shows that the ob-
served 2+1 level moves up and down within the 1-2 MeV
region for N=50-58, whereas it is quite low (∼0.2 MeV)
for N ≥ 60 [6–16]. Namely, a sharp drop by a factor of
∼6 occurs at N=60, which is consistent with the corre-
sponding B(E2) values shown in Fig. 1(c). These features
have attracted much attention, also because no theoretical
approach seems to have reproduced those rapid changes
covering both sides. More importantly, an abrupt change
seems to occur in the structure of the ground state as a
function of N, which can be viewed as an example of the
quantum phase transition (QPT) satisfying its general def-
inition to be discussed [17, 18]. This is quite remarkable,
as the shape transition is in general rather gradual. In ad-
dition, there is much interest in those Zr isotopes from the
viewpoint of the shape coexistence [19].

The advanced version of MCSM [20, 21] can cover all
Zr isotopes in this range of N with a fixed Hamiltonian,
when taking a large model space, as shown in Table I. The
MCSM, thus, resolves the difficulties of conventional SM

TABLE I. Model space for the shell model calculation.

proton orbit magic number neutron orbit
- 1 f7/2, 2p3/2

82
- 0h11/2

0g7/2, 1d5/2,3/2, 2s1/2 0g7/2, 1d5/2,3/2, 2s1/2

50
0g9/2 0g9/2

0 f5/2, 1p3/2,1/2 -

calculation, where the largest dimension reaches 3.7×1023,
much beyond its current limit. Note that no truncation
on the occupation numbers of these orbits is made in the
MCSM. The structure of Zr isotopes has been studied by
many different models and theories. For instance, a recent
large-scale conventional SM calculation showed a rather
accurate reproduction of experimental data up to N=58,
whereas it was not extended beyond N=60 [22]. The 2+1
levels have been calculated in a wider range in Interact-
ing Boson Model (IBM) calculations, although the afore-
mentioned rapid change is absent [23, 24]. Some other
works were restricted to deformed states [5, 25, 26], or in-
dicated gradual shape-changes [27–34].

It is, thus, very timely and needed to apply the MCSM to
Zr isotopes, particularly heavy exotic ones. The Hamil-
tonian of the present work is constructed from existing
ones, so as to reduce ambiguities. The JUN45 Hamilto-
nian is used for the orbits, 0g9/2 and below it [35]. The
SNBG3 Hamiltonian [36] is used for the T=1 interaction
for 0g7/2, 1d5/2,3/2, 2s1/2 and 0h11/2. Note that the JUN45
and SNBG3 interactions were obtained by adding empir-
ical fits to microscopically derived effective interactions
[35, 36]. The VMU interaction [37] is taken for the rest
of the effective interaction. The VMU interaction consists
of the central part given by a Gaussian function in addi-
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Mercury isotopes: a case of shape-coexistence 
        with no crossing and no mixing  
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FIG. 1. Partial spectra of Hg (panel (a)), Pt (panel (b)), Zr (panel (c)), and Sm isotopes (panel

(d)).

II. THE FORMALISM

In order to compute two-nucleon transfer intensities we will use here as framework the

IBM [29]. The model was proposed as a symmetry dictated approximation of the shell

model, assuming that the relevant degrees of freedom are pairs of nucleons coupled either

to angular momentum L = 0 (S pairs) or to angular momentum L = 2 (D pairs), which

are considered as bosons as further approximation. The number of active pairs of nucleons

regardless its particle or hole nature or proton or neutron character is denoted as N . Very

soon the IBM was modified to deal also with particle-hole excitation, e.g., 2p-2h excitations

[30, 31]. In this case the original Hilbert space is enlarged to [N ] ⊕ [N + 2]. The [N + 2]

space corresponds to considering two extra bosons that come from the promotion of a pair

of protons across the corresponding shell closure, generating an extra boson made of proton

holes and another made of proton particles.

For the case of the IBM without configuration mixing a simplified Hamiltonian called

extended consistent-Q Hamiltonian (ECQF) [32, 33] will be considered. This Hamiltonian

has been used to describe successfully even-even medium- and heavy-mass nuclei. The
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3. Two-neutron transfer intensities in the even-even Pt isotope chain (two configurations)

In the Pb region another very interesting isotope is Pt. The Pt isotopes also present low-

lying intruder states coming from the [N +2] configuration. The systematics of this isotope

chain including configuration mixing has been studied within the IBM-CM Hamiltonian in

Refs. [21, 22]. One of the main conclusion from these works is that in Pt a very large degree

of mixing between the intruder and the regular states exists and that shape coexistence

is somehow concealed, with barely differences between the calculations with one or two

configurations. The parameters obtained from these works were used to generate the wave

functions of the relevant states considered in the present work.

In Figure 6, the calculated values for (t,p) transfer intensities from the 0+1 in the parent

nucleus to 0+i states in the daughter one for the Pt isotope chain are plotted in panel (a). As

in the case of Hg, in panel (b), the energies of the unperturbed [N ] and [N+2] 0+ band-heads

are presented and in panel (c), the regular content of the states 0+1 and 0+2 are shown. Panel

(a) is very similar to the Hg case, but looking at panel (b) and (c), one notices important
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[30, 31]. In this case the original Hilbert space is enlarged to [N ] ⊕ [N + 2]. The [N + 2]

space corresponds to considering two extra bosons that come from the promotion of a pair

of protons across the corresponding shell closure, generating an extra boson made of proton

holes and another made of proton particles.

For the case of the IBM without configuration mixing a simplified Hamiltonian called

extended consistent-Q Hamiltonian (ECQF) [32, 33] will be considered. This Hamiltonian

has been used to describe successfully even-even medium- and heavy-mass nuclei. The
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FIG. 6. The same as Fig. 2 but for Pt isotopes. IBM-CM results taken from [21].

and daughter isotopes allows to get a large fraction of intensity from both sectors. Note that

the transition operator connect the regular (intruder) sector of the father nucleus with the

regular (intruder) one in the daughter nucleus, therefore both sectors contribute but either

in a constructive (for 0+1 → 0+1 ) or destructive (for 0+1 → 0+2 ) way. The leading transition

remains quite stable and only a minor lowering (an a modest increase in the transfer to

the 0+2 (A + 2) state) is observed around the crossing points. According to the results, the

contributions for the transition to 0+1 sum up in a constructive form while in a negative way

for the transition to the 0+2 state that is almost zero all the way.

B. IBM with a single configuration Hamiltonian

In this section the two-neutron transfer intensity for Zr, Pt, and Sm isotopes are explored

using the IBM with a single configuration. As in previous section, the parameters of the

Hamiltonians are fixed in previous studies and here the wave functions are used without

further tuning.
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Platinum isotopes: a case of shape-coexistence with crossing and large 
(but stable) mixing, and no significant signal in the pair strength  



Conclusions: 

Pairing response (tested in two-particle transfer reactions but also in other 
dynamical processes involving pairs of particles) gives strong constraints  on 
nuclear wave functions.  The effect is amplified in correspondence of critical 
situations associated with shape phase transitions or crossing with an 
intruder state, with “abnormal” population of excited 0+ states and weakening  
of the ground state transition.  In spite of this clear signal, however, it  
seems difficult to clearly disentangle the shape coexistence picture from  
the QPT one only using the two-neutron transfer intensity. 

Collaborators (on different points): 
Jose’ Enrique Garcia Ramos, Pepe Arias, Clara Alonso, Lorenzo Fortunato, Jose’ 
Antonio Lay, Praveen Jodidar, Ruben Fossion, Taka Otsuka and Yusuke Tsunoda 
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FIG. 7: The (p,t ) cross sections at the angle 5◦ for 0+ states
in 158Gd: experimental data (a) and calculated in the frame-
work of the QPM (b).

in Ref. [9]. The 2564.7 keV γ ray was attributed to the
transition from the 0+ state to the 2+1 state at the 79.4
keV energy [36]. However, the angular distribution of the
γ ray of 2564.7 keV is not completely isotropic which al-
ready excludes a definite 0+ assignment. Finally, the real
energy of the corresponding peak as follows from our cal-
ibration is 2632.7 keV and as seen from Fig. 5 the angular
distribution for this level corresponds to the 4+ spin as-
signment. Since the coincidences were not measured, it
is not obvious that the γ rays of 2564.7 keV refer to the
de-excitation of the 0+ state into the 2+1 state. There-
fore, the situation with the identification of this state is
not clear. Perhaps, the 2564.7 keV γ ray refers to the
de-excitation of the 2643.1 keV level, seen in the present
study with close energy to the putative 2644.2 keV state,
which is identified, however, as the 2+ level (see. Fig. 5).
In a similar way, the 2832.0 keV γ transition was used

to identify the 0+ state at an energy of 2911.5 keV, also
assigned as 0+ state in the (p,t) reaction. However, again
the real energy of the corresponding peak is 2888.2 keV.
In addition, we found 20 new 0+ states in the energy

interval from 3200 to 4300 keV. This energy region was

not investigated so far in the (p,t) reaction. The total
number of 0+ states detected in one nucleus equals now
34, which is the largest of such states observed so far.
For three of them the 0+ assignments are tentative. For
some of these states, their energies observed in the (n,γ)
reaction were found to be close within the error limits.
Apart from the energies, there is no other information
about these states. Therefore, one can not be sure that
these states and the ones observed in the (p,t) reaction
are the same, although the close proximity of the en-
ergies obtained in the two independent experiments are
supporting the validity of our calibration.

As already mentioned, theoretical models have rela-
tively modest results describing the spectra of multiple
0+ excitations. No attempt was made to fit individual
0+ states and, therefore, no predictions of the 0+ states
having a correspondence with the specific experimental
states. The point of the calculations was rather to see
a number of 0+ excitations in the energy range up to
about 3 MeV, and a general trend in the cumulative
cross section with increasing energy. Such calculations
were performed both within the framework of the QPM
and the spdf-IBM, in particular, for 158Gd [11, 12]. The
IBM calculations yields a number of 0+ states close to
the experimental ones below 3 MeV, and many of the
0+ states of two-phonon octupole character, as shown
in Fig. 6. The spdf-IBM failed to reproduce the increas-
ing density of 0+ states above 3 MeV. In addition, several
other 0+ states at higher excitation energy are calculated
in Ref. [11], amounting to 23 excited 0+ states below 4
MeV. Therefore, spdf-IBM reproduces at least partially.
The cross sections were not calculated in this publication
since only the use of an extended Hamiltonian allows to
perform such calculations [37].

The cross sections were calculated in the framework
of the QPM. The experimental spectra of 0+ states, as
compared to the calculated ones, are shown in Fig. 7. The
QPM predicts a number of 0+ states which are close to
the one observed below 3 MeV. However, this model fails
in the cross section calculation for the first excited state.
This state is excited very weakly, that may indicate its β-
vibrational nature. A large cross section (33% of the cross
section for g.s.) is observed for the second excited 0+

state, which is evidence of the similarity of its structure to
the structure of the ground state. In contrast to this, the
QPM predicts strong excitation just for the first excited
0+ state, that shows its resemblance with the ground
state, and very weak excitations for all other 0+ states.
Six of the QPM 0+ states (mostly the lowest) have a
one-phonon character. Other states at higher excitation
energy contain large, and, in many cases, the dominant
two-phonon components. They are built on the collective
octupole phonons almost in all cases, in agreement with
the IBM calculation [11].

New experimental data in the extended energy region
represent an excellent opportunity to test these and other
nuclear models. There is one additional aspect of such
studies. The QPM predicts an increase of the number

Levon etal 
Phys. Rev. C 100, 034307 (2019) 
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The situation is complicated for the large number of 0+ states 

0+3	


