Reaction cross sections of drip-line nuclei with the Gamow Shell Model

Nicolas Michel (IMP)

Witek Nazarewicz, Kevin Fossez (MSU) Jimmy Rotureau (Lund University) Alexis Mercenne (Yale) Marek Płoszajczak, José Pablo Linares (GANIL) Yannen Jaganathen (IFJ PAN Krakòw) R. M. Id. Betan (CONICET)

Furong Xu, Jianguo Li (PKU) Simin Wang (Fudan University) Yuanzhuo Ma (South Normal University) Baishan Hu (TRIUMF) Wei Zuo, Zuxing Yang, Penghui Chen (IMP) Guoxiang Dong, Xiaobao Wang (Huzhou University)

Scientific context

Experimental interest

Study of nuclei far from the valley of stability Many efforts made to study drip-line nuclei

N. Michel, W. Nazarewicz, J. Okołowicz, M. Płoszajczak, J. Phys. G: Nucl. Part. Phys., **37** 064042 (2010)

Gamow states

Bound and resonance states: same object Same qualitative behavior inside the nucleus Asymptote is different for bound, antibound, resonance states

N. Michel, M. Płoszajczak,

The Gamow Shell Model: the unified theory of nuclear structure and reactions, Lecture Notes in Physics, Springer International Publishing (2021)

The Berggren basis

Berggren basis : bound, resonance and scattering states

Efficient discretization of the L⁺ contour with Gauss-Legendre quadrature

N. Michel, M. Płoszajczak,

The Gamow Shell Model: the unified theory of nuclear structure and reactions, Lecture Notes in Physics, Springer International Publishing (2021)

Complex scaling

Divergence of unbound states on the real axis Resonance states: localized in the complex plane Complex scaling method to calculate matrix elements Bound and resonance states: normalized Scattering states: normalized with a Dirac delta

N. Michel, M. Płoszajczak,

The Gamow Shell Model: the unified theory of nuclear structure and reactions, Lecture Notes in Physics, Springer International Publishing (2021)

One-body potential

Expansion of bound Woods-Saxon 1p_{3/2} proton state Basis of unbound states: no bound basis state Large component from basis resonance state Scattering components smaller, but necessary

Components have large real and imaginary parts Imaginary parts cancel in observables

N. Michel, M. Płoszajczak,

The Gamow Shell Model: the unified theory of nuclear structure and reactions, Lecture Notes in Physics, Springer International Publishing (2021)

Gamow Shell Model (GSM)

Standard shell model

Closed quantum system description

Gamow Shell Model Open quantum system description 50 40 30 20V(r) (MeV) 100 -10-20 -30 -40 -50 102 4 6 8 0 r(fm) Localized states Weakly bound/resonant states Scattering states

Diagonalization of GSM matrices

N. Michel, W. Nazarewicz, M. Płoszajczak, J. Okołowicz, Phys. Rev. C, **67** 054311 (2003)

Cluster Orbital Shell Model (COSM)

Problematic 3A degrees of freedom (particles coordinates) 3(A-1) physically (translational invariance) → spurious states

<u>Standard shell model</u> Calculation in a major shell (core + valence nucleons) Lawson method (no-core shell model) Harmonic oscillator basis only

Cluster orbital shell model (COSM)

Relative core coordinates → no center of mass excitation Center of mass handled by a recoil term in the Hamiltonian +: Formal use identical to laboratory coordinates -: Inferior to Jacobi coordinates

Pauli principle approximately treated with a Pauli operator on the core

<u>Practical use of COSM</u> Definition of Hamiltonian directly in COSM frame Calculations with COSM and Jacobi coordinate models very close

Comparison of A=6 nuclei using COSM and Jacobi coordinates

Core fitted to ⁵He single-particle states Standard parameters of Minnesota interaction GCC : Gamow hyperspherical harmonics Coupled-channel equations using Jacobi coordinates GSM-COSM and GCC results very close

Energetics of light nuclei with an effective interaction

Y. Jaganathen, R. M. Id Betan, N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. C **96**, 054316 (2017)

Parameter		Value
central	triplet-odd	-1.54 ± 25.53
	triplet-even	-4.71 ± 0.76
	singlet-odd	-32.78 ± 7.41
	singlet-even	-5.79 ± 0.42
spin-orbit	triplet-odd	-138.31 ± 819.00
tensor	triplet-odd	-12.61 ± 69.96
	triplet-even	-16.25 ± 4.28

Valence nucleons above a ⁴He core psd Berggren space FHT (Furutani-Horiuchi-Tamagaki) interaction

Core fitted to nucleon + ⁴He phase shifts He, Li, Be isotopic chains considered Parameters fitted to experimental data Uncertainties of model calculated

<u>In progress</u>: Bayesian statistical analysis

Applications : Li isotopes and mirror partners

strong Thomas-Ehrman shifts Proton-rich not well known experimentally GSM predictions consistent with recent analyses

Two-neutron halo of ³¹F

Valence nucleons above a ²⁴O core sdpf HO + Berggren space FHT and EFT (effective field theory) interactions

Neutron-rich fluorine isotopes not well known Only GSM can include continuum coupling Good description of fluorine isotopes at neutron drip-line ³¹F predicted to be a two-neutron halo Confirmed from GSM calculations with FHT and EFT Clustering still in question

Two-proton halo of 17Ne

Y.Z. Ma, F.R. Xu, N. Michel, S. Zhang, J.G. Li, B.S. Hu, L. Coraggio, N. Itaco, A. Gargano, Phys. Lett. B **808**, 135673 (2020)

Asymptotic normalization coefficients (ANC) with GSM

Overlap functions: nucleon form factor times A-1 core One-body asymptotic behavior of many-body functions Decay directly related to one-nucleon separation energy Asymptotic decay: Hankel/Coulomb wave function times ANC

Physical interest: radiative capture, transfer cross section Cross sections proportional to the square of the ANC

Determination of the ANC in standard models: DWBA + shell model Standard models: continuum coupling neglected GSM: unified determination of ANCs

Applications: nuclei bearing A=6-8 nucleons GSM calculations: ⁴He core + phenomenological Gaussian interaction Astrophysical interest: solar neutrinos, puzzled Li abundance, ...

⁶Li/⁷Be, ⁶Li/⁷Li: ground states

J. Okołowicz, N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. C **85**, 064320 (2012)

Reaction Seminar 2021 https://reactionseminar2021.github.io, June 10th 2021

Slide 16

⁷Be/⁸B, ⁷Li/⁸Li: ground states

J. Okołowicz, N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. C **85**, 064320 (2012)

Reaction Seminar 2021 https://reactionseminar2021.github.io, June 10th 2021

Slide 17

⁷Be/⁸B, ⁷Li/⁸Li: unbound states

 $3/2^{-} \rightarrow 3^{+}$: complex overlap functions of unbound states

J. Okołowicz, N. Michel, W. Nazarewicz, M. Płoszajczak, Phys. Rev. C **85**, 064320 (2012)

Reaction observables with GSM

Resonating Group Method (RGM) channels: products of target and projectile states Target and projectile states from GSM Projectiles: proton/neutron (scattering, radiative capture), deuteron (scattering, transfer, radiative capture in progress), ⁴He, ³He, t (coded, tests in progress)

Potentials calculated from GSM: microscopic Coupled-channel equations to solve : GSM-CC Same Hamiltonian in GSM and RGM: unification of structure and reaction models Fine tuning of Hamiltonian parameters

Applications

Direct and transfer reactions of low energy Nuclei of experimental and astrophysical interest

Elastic and inelastic scattering reactions Proton and neutron radiative capture

¹⁸Ne(p,p) scattering reaction

Y. Jaganathen, N. Michel, M. Płoszajczak, Phys. Rev. C 89, 034624 (2014)

¹⁹Na spectrum fitted to experimental data¹⁹Na states unbound but very narrowGood agreement with experimental data

¹⁴O(p,p) scattering reaction

Θ = 180 deg

¹⁴O and ¹⁵F spectra fitted to experimental data
¹⁵F unbound: continuum effects prominent in this reaction Presence of a narrow 1/2- state above the barrier: effect seen on calculated cross section
Good agreement with experimental data

Valence protons above a ¹²C core psd Berggren space FHT (Furutani-Horiuchi-Tamagaki) interaction

⁷Be(p, γ), ⁷Li(n, γ) radiative captures

⁷⁻⁸Be and ⁷⁻⁸Li spectra fitted to experimental data
 Solar neutrino flux from ⁷Be and ⁸B
 Exact fine tuning of ⁸B separation energy necessary (proton halo)
 Good agreement with experimental data

Valence nucleons above a ⁴He core psd Berggren space FHT interaction

G.X. Dong, N. Michel, K. Fossez, M. Płoszajczak, Y. Jaganathen, R.M. Id Betan, J. Phys. G: Nucl. Part. Phys. **44**, 045201 (2017)

Problem of puzzled abundances of ⁶⁻⁷Li ⁶⁻⁷Li and ⁷Be spectra fitted to experimental data Good agreement with experimental data Valence nucleons above a ⁴He core psd Berggren space FHT interaction

⁴He(d,d) scattering reaction (1/3)

A. Mercenne, N. Michel, M. Płoszajczak, Phys. Rev. C 99, 044606 (2019)

⁴He(d,d) scattering reaction (2/3)

Valence nucleons above an alpha core Partial waves up to I=4 Deuteron structure from N³LO interaction Break-up included with scattering deuteron states FHT interaction between valence nucleons

Simple model for alpha cluster ($0s_{1/2}$ occupied only) Spectrum fit not sufficient already for low energies Good reproduction of experimental data with ANC fit

A. Mercenne, N. Michel, M. Płoszajczak, Phys. Rev. C 99, 044606 (2019)

⁴He(d,d) scattering reaction (3/3)

A. Mercenne, N. Michel, M. Płoszajczak, Phys. Rev. C 99, 044606 (2019)

⁴⁰Ca(d,p) transfer reaction

A. Mercenne, N. Michel, M. Płoszajczak, in preparation

Valence nucleons above a ⁴⁰Ca core Same framework used as for ⁴He(d,d)

Scattering and transfer cross sections properly described Simple model : no excitation from ⁴⁰Ca core, Inter-nucleon correlations missing : larger model space needed

> Reaction Seminar 2021 https://reactionseminar2021.github.io, June 10th 2021

Slide 27

Book on Gamow shell model

The Gamow Shell Model: the unified theory of nuclear structure and reactions

Authors : N. Michel and M. Płoszajczak

Publisher : Lectures Notes in Physics (Springer)

Background

Functional analysis, linear algebra, differential equations, standard quantum mechanics

Main topics Introduction with one-body and two-body systems Many-body theory of complex-energy physics Halos and resonances in molecules and nuclei Examples of applications in nuclear structure and reactions

<u>Exercises and codes</u> Theoretical details about used methods Computational applications using codes available from internet

Current status

GSM: structure model including the continuum GSM-CC: reaction model including structure

Elastic and inelastic scattering cross sections Radiative capture cross sections Deuteron projectile scattering and transfer cross sections

Energetics of the lightest nuclei Nice agreement with experimental data Structure effects on reaction observables explicit Fine tuning of Hamiltonian necessary

Book on GSM and GSM-CC published Theory, exercises, GSM codes publicly available

Perspectives

GSM: Isotopic chains with effective and realistic interactions GSM-CC: non-resonant channels, few-nucleon clusters Calculation of theoretical uncertainties with Bayesian statistics

Effective interaction at drip-lines for light nuclei Observables dependence on spectrum (⁶⁻⁸Li,⁷Be,⁸B) Two-neutron and two-proton halos (³¹F, ¹⁷Ne)

Reactions with GSM-CC ⁶Li(p,γ), ⁶Li(n,γ), ⁷Be(p,γ), ⁷Li(n,γ), ¹⁴O(p,p), ¹⁸Ne(p,p), ⁴He(d,d), ⁴⁰Ca(p,p), ⁴⁰Ca(n,n), ⁴⁰Ca(d,p)