

Theory Alliance Facility for rare isotope beams

Analysis of one-neutron knockout observables : sensitivity to the projectile's structure and dynamical effects

Chloë Hebborn and Pierre Capel

May, 6 2021

Chloë Hebborn

Reaction Seminar 2021

May, 6 2021 1 / 26

Why study unstable nuclei?

Unstable nuclei crucial to understand the formation of matter in stars

[Nature 477, 15, 2011]

FRIB will access unexplored regions of the nuclear chart

Halo nuclei

In the light neutron-rich sector :

Halo nuclei exhibit a very large matter radius Compact core + one or two loosely-bound nucleons

Ex :¹¹Be = ¹⁰Be + n

$$S_n = 501 \text{ keV}$$

¹⁵C = ¹⁴C + n
 $S_n = 1218 \text{ keV}$

Short-lived ($\tau_{^{11}Be} \sim 13$ s) : studied through reaction processes

Knockout reactions a useful probe

One-neutron knockout : $P(\equiv c+n) + T \rightarrow c+X$

 \Rightarrow high statistics since the neutron is not detected in coincidence!

Knockout carries information about the nucleus size

KO Reactions at 60A to 100A MeV

 \succ^n

Sudden approximation :

distribution of c inside the nucleus

- + Uncertainty principle : $\Delta r \Delta p > \hbar/2$
- \Rightarrow width linked to the nucleus size

Knockout reactions a useful probe

One-neutron knockout : $P(\equiv c+n) + T \rightarrow c+X$

 \Rightarrow high statistics since the neutron is not detected in coincidence!

Knockout used as a spectroscopic tool

Ex : ¹¹Be + ⁹Be \rightarrow ¹⁰Be @ 60A MeV Shell model predicts $1/2^-$ g.s. $\overline{5/2^+ \ 1.274 \ d5/2}$ $\epsilon = 0 - - - \frac{10}{-9} \frac{Be + n}{2} - - - \frac{1}{1/2^- - 0.184 \ 0p1/2}}{\frac{1}{1/2^+ - 0.501 \ 1s1/2}}$ ¹¹Be spectrum Parity inversion of $1/2^+$ and $1/2^ \rightarrow$ visible in KO observables !

 \succ^n

Reaction model and eikonal approximation

• effective c-n Hamiltonian h_{cn} adjusted on low-energy spectrum

• P-T interactions : optical potentials V_{cT} and V_{nT}

Three-body Schrödinger equation :

$$[T_R + h_{cn} + V_{cT} + V_{nT}] \Psi(\mathbf{R}, \mathbf{r}) = E \Psi(\mathbf{R}, \mathbf{r})$$

Eikonal approximation : $\Psi(\mathbf{R}, \mathbf{r}) = e^{iKZ} \widehat{\Psi}(\mathbf{R}, \mathbf{r})$ and $\Delta_{\mathbf{R}} \widehat{\Psi}(\mathbf{R}, \mathbf{r}) \ll K \frac{\partial}{\partial Z} \widehat{\Psi}(\mathbf{R}, \mathbf{r})$

$$\Rightarrow i\hbar v \frac{\partial}{\partial Z} \widehat{\Psi}(\boldsymbol{R}, \boldsymbol{r}) = [h_{cn} - \epsilon_0 + V_{cT} + V_{nT}] \widehat{\Psi}(\boldsymbol{R}, \boldsymbol{r}),$$

Dynamical Eikonal Approximation (DEA) [Baye, Capel, and Goldstein, PRL 95, 082502 (2005)]

Eikonal model

$$\mathsf{DEA} : i\hbar v \frac{\partial}{\partial Z} \widehat{\Psi}(\mathbf{R}, \mathbf{r}) = [h_{cn} - \epsilon_0 + V_{cT} + V_{nT}] \widehat{\Psi}(\mathbf{R}, \mathbf{r}),$$

Adiabatic approximation : $h_{cn} \approx \epsilon_0$

$$\Rightarrow i\hbar v \frac{\partial}{\partial Z} \widehat{\Psi}^{\text{eik}}(\boldsymbol{b}, Z, \boldsymbol{r}) = [V_{cT} + V_{nT}] \widehat{\Psi}^{\text{eik}}(\boldsymbol{b}, Z, \boldsymbol{r}),$$

$$\Psi^{\text{eik}}(\boldsymbol{b}, Z, \boldsymbol{r}) \xrightarrow{}_{Z \to +\infty} e^{iKZ} e^{-\frac{i}{\hbar v} \int_{-\infty}^{+\infty} [V_{cT}(\boldsymbol{b}_{cT}, Z) + V_{nT}(\boldsymbol{b}_{nT}, Z)] dZ} \Phi_0(\boldsymbol{r}),$$

Usual eikonal model [Glauber, High energy collision theory, (1959)]

KO cross sections :
$$\sigma_{th} = \sum_{i} SF_i \times \sigma_{ko}^{sp,i}$$

 \rightarrow occupancy of a s.p. orbital $i SF_i$
 \rightarrow s.p. KO cross section $\sigma_{ko}^{sp,i} = \sigma_{bu}^{sp,i} + \sigma_{str}^{sp,i}$
1 2

- 1 Diffractive breakup $\sigma_{hu}^{sp,i}$: DEA or eikonal model
- 2 Stripping $\sigma^{sp,i}_{str}$: eikonal model combined with Hussein-McVoy formalism

[Hussein and McVoy, NPA 445, 124 (1985)]

Knockout also used to study more bound nuclei

 $\Delta S : p-n \text{ asymmetry of the nucleus}$ $R_{S} = \sigma_{exp} / \sigma_{th}$ with $\sigma_{th} = \sum_{i} SF_{i} \times \sigma_{ko}^{sp,i}$ shell-model SF_{i} and eikonal $\sigma_{ko}^{sp,i}$

 \Rightarrow R_S interpreted as the deviations from shell-model calculations

→Asymmetry-dependence in KO not seen in other reactions ex : transfer, quasi-free scattering [Aumann *et al.* Prog. Part. Nucl. Phys **118**, 103847 (2021)]

① Which part of the w.f. is probed for halo nuclei (top left)?

2 How does this evolve with the binding energy (going down right)?

③ Improvement of the reaction model : extension of the DEA to stripping?

① Which part of the w.f. is probed for halo nuclei (top left)?

[Tostevin and Gade. PRC 90, 057602 (2014)]

Halo-EFT model of the projectile

Test case :
$${}^{11}\text{Be} + {}^{9}\text{Be} \rightarrow {}^{10}\text{Be} + X @ 60A \text{ MeV}$$
 $5/2^{+}$ 1.274 $d5/2$ ${}^{11}\text{Be} :$ g.s. $\epsilon_{1/2^{+}} = -0.501$ MeV $\epsilon = 0$ $- - - - {}^{10}\text{Be} + n_{-} - - \epsilon = 0$ $- - - {}^{10}\text{Be} + n_{-} - - -$ e.s. $\epsilon_{1/2^{-}} = -0.184$ MeV $1/2^{-}$ -0.184 $0p1/2$ $1/2^{+}$ -0.501 $1s1/2$ 11 Be spectrum

Halo-EFT model of ¹¹Be : uses the **separation of scale** to expand low-energy behaviour with $R_{core}/R_{halo} \sim 0.4$

[H.-W. Hammer et al. JPG 44, 103002 (2017)]

$\Rightarrow {}^{10}\text{Be-}n \text{ effective potential} \\ \text{At NLO} : V_{IJ}(r) = V_{IJ}^{(0)}e^{-\frac{r^2}{2r_0^2}} + V_{IJ}^{(2)}r^2e^{-\frac{r^2}{2r_0^2}} \text{ with } r_0 \text{ cutoff}$

We constrain $V^{(0)}$ and $V^{(2)}$ in s1/2 and p1/2

- Experimental binding energies of $1/2^+$ and $1/2^-$
- Asympt. Norm. Constant (ANC) from ab initio calculations

No p3/2 interaction : negligible phase shifts at low ϵ [Calci et al. PRL 117, 242501 (2016)]

Ab initio description of ¹¹Be

NCSMC description of ¹¹Be reproduces the energy levels and the parity inversion !

[Calci et al. PRL 117, 242501 (2016)]

Sensitivity of KO observables of halo nuclei

Reference calculation : ANC=0.786 fm^{-1/2} [Calci *et al.* PRL 117, 242501 (2016)] $\sigma_{bu} > \sigma_{str}$ Same ANC but SF=0.9 : same cross sections !

KO of halo nuclei sensitive only to the asymptotics ! \Rightarrow Possibility to extract an ANC

Chloë Hebborn

Reaction Seminar 2021

How does it compare to experimental data?

Halo-EFT model of ¹¹Be using ANCs of NCSMC Eikonal **lacks asymmetry** due to the adiabatic approximation σ_{bu} computed with the DEA \rightarrow Asymmetry well reproduced

How does it compare to experimental data?

Halo-EFT model of ¹¹Be using ANCs of NCSMC Eikonal lacks asymmetry due to the adiabatic approximation σ_{bu} computed with the DEA \rightarrow Asymmetry well reproduced Sensitivity to optical potentials : ANC² = 0.62±0.06±0.09 fm⁻¹ \Rightarrow Excellent agreement with ab initio value ANC²=0.618 fm⁻¹

Similar analysis for ¹⁵C

Halo-EFT model of ¹⁵C using ANCs extracted from transfer (and NCSMC) σ_{bu} computed with the DEA \rightarrow **Asymmetry well reproduced**

Similar analysis for ¹⁵C

Halo-EFT model of ¹⁵C using ANCs extracted from transfer (and NCSMC) σ_{bu} computed with the DEA \rightarrow **Asymmetry well reproduced** Strong sensitivity to optical potentials : ANC² = 1.57±0.30±0.18 fm⁻¹ \Rightarrow Excellent agreement with ab initio value ANC²=1.644 fm⁻¹

ANCs of ¹¹Be and ¹⁵C reproduce knockout data,...

ANCs of ¹¹Be and ¹⁵C reproduce knockout data,...

diffractive breakup data

PHYSICAL REVIEW C 98, 034610 (2018)

Dissecting reaction calculations using halo effective field theory and ab initio input

E Capel.¹³⁴⁷ D. R. Phillips.¹³⁴⁴ and H. W. Hammer¹⁴⁴ Visatian for Korophysi. Absonato Conderey, Eliversita Matter, 5399 Maios, Germany ¹⁹Pispiane Worksine et Physicage Quantigue (CP 29), Usersal Marte & Branchet (CHI), Br 100 Brancek, Driginn ¹Instante, Korophysil, Technick Universitä Dramanok, 6428 Darmasak, Carmany ¹EuseM. Mature Instante SMM, CS Hielmakagemane fift Scient Arthumous Quin Useriany, Marcana ¹EuseM. Mature Instante SMM, CS Hielmakagemane fift Scient Arthumous Quin Useriany, Marcana ¹EuseM. Mature Instante SMM, CS Hielmakagemane fift Scient Arthumous Quin Useriany, Marcana ¹EuseM. Mature Instante SMM, CS Hielmakagemane fift Scient Arthumous Quin Useriany, Marcana ¹Charlow, Marcana Marten, Marcana Martin, Marcana Martin, Marcana ¹Charlow, Marcana Martin, Ma

transfer data,

PHYSICAL REVIEW C 98, 054602 (2018)

Systematic analysis of the peripherality of the ¹⁰Be(d, p)¹¹Be transfer reaction and extraction of the asymptotic normalization coefficient of ¹¹Be bound states

J. Yang^{1,2,4} and P. Capel^{1,2,4} Phyrique Nucléaire et Phyrique Gaussier (CP 229), Université libre de Bravelles (ULB), 8-1050 Bravele, Belgium ²Addeline Kern-rs Stalinestrissie. Chemistenia 2004-bus 2418, B-3001 Leaver, Belgium

²Afdeling Kerm-en Stralingsfysica, Celestijuoniaan 200d-bus 2418, B-3001 Leaver, Brigium ³Institut für Kernphysik, Johannes Gatenberg-Universität Mainz, D-55699 Mainz, Germany

and radiative capture data !

PHYSICAL REVIEW C 100, 044615 (2019)

¹⁵C: From halo effective field theory structure to the study of transfer, breakup, and radiative-capture reactions

Laura Moschini 0,1-7 ficeheng Yang 0,1-3-1 and Pierre Capel 0^{-1,1,4} ¹Physique Nucleinie et Physique Chantipue (CE. 229), Obierneit libre de Bracelleu (ULB), 50 euroue ED. Roovereld, Berlof OB Brassis, Belginson ²Afdeling Kernen Strafforgfision, Cateolijenskanz 2006 Aug 2418, 2001 Lawon, Belgian ³Jostine für Kerneyhvir, Johannes Cateologian-Universiti Mata, Schner Auger, Belgian ³Jostine für Kerneyhvir, Johannes Cateologian – Universiti Mata, Schner Auger, Belgian

(日) (四) (日) (日) (日)

¹ Physique Nucléoire et Physique Quantique (C.P. 225), Université Ider de Brunelles (ULB), 50 avenue F20, Bousevelt, 8–1850 Brunelle, Belgium ¹⁶ Fractisat für Keruphysik, Jahannes Gannberg-Université Malaci, Johann-Jacobier-Becher Wig els, 0–55599 Malaci, Germany

Summary for halo nuclei

① Halo nuclei : peripherality of knockout reactions Halo-EFT bridges *ab initio* and reaction theory

Sensitivity to the optical potentials \rightarrow Need for a more systematic study

② What happens when the binding energy increases (going down right)?

(suggested by D. Bazin and F. Nunes @ Reaction Seminar 2020)

[Tostevin and Gade. PRC 90, 057602 (2014)]

Deeply-bound projectile description

Irrealistic ¹¹Be : $1/2^+$ g.s. $S_n = 10$ MeV

Beyond Halo-EFT : use a Gaussian potential $V_{s1/2}$

$$V_{s1/2}(r) = V_{s1/2}^{(0)} e^{-\frac{r^2}{2r_0^2}}$$

We constrain $V_{s1/2}^{(0)}$ with separation energy S_n Generation of different g.s. wavefunctions with various r_0

Chloë Hebborn

Sensitivity for deeply-bound projectile

• Larger $r_0 \rightarrow$ larger ANC \rightarrow larger σ_{str} and σ_{bu} (with $\sigma_{str} > \sigma_{bu}$)

Sensitivity for deeply-bound projectile

• Larger $r_0 \rightarrow$ larger ANC \rightarrow larger σ_{str} and σ_{bu} (with $\sigma_{str} > \sigma_{bu}$)

Rescale with the ANC → same asymptotics but SF=0.2-0.01
 σ_{bu} : smaller spread → stays mainly peripheral
 σ_{str} : no scaling (inverse order) & exhibit different shapes
 ⇒ σ_{str} is more sensitive to the inner part of the wavefunction
 1. From which r is σ_{str} sensitive?
 2. How does it depend on SF?

Dependence of σ_{ko} on SF

1. From which r is σ_{str} sensitive? 2. How does it depend on SF?

 \Rightarrow SF sensitive to all distances

 $\Rightarrow \sigma_{ko}$ insensitive to r < 1.5 fm (decrease by only 3%)

→ insensitivity to the internal node ⇒ non-linear dependence of σ_{ko} on the normalization SF ⇒ σ_{ko} behaves similarly with r_{min} as $\sqrt{\langle r^2 \rangle}$

Chloë Hebborn

Reaction Seminar 2021

Dependence of σ_{ko} on $\sqrt{\langle r^2 \rangle}$

Approximate linear dependence of σ_{ko} in $\sqrt{\langle r^2 \rangle}$ \rightarrow also observed in [Gade *et al.* PRC 044306 (2008)]

Summary for deeply-bound nuclei

⁽²⁾ Deeply-bound projectile $S_n = 10 \text{ MeV}$:

• σ_{ko} is sensitive to the inner part but only above a certain distance $\rightarrow \sigma_{ko}$ does not depend linearly on SF but approximatively on $\sqrt{\langle r^2 \rangle}$

 \rightarrow Still not clear why there is a strong reduction of exp.-th. ratio

 \Rightarrow Improvement of the few-body model of reaction are still needed

ex : core excitation as in X-CDCC? [Louchart, Obertelli, Boudard, Flavigny PRC 83 011601(R) (2011)] dynamical treatment of the stripping as in TC? [Flavigny et al. PRL 108, 252501 (2012)]

③ Improvement of the reaction model : study of the extension of the DEA to stripping reactions

Application of the ERT to the DEA

Eikonal Reaction theory (ERT) :

treats short-range interaction adiabatically

and long-range dynamically

[M. Yahiro et al. PTP 126, 167 (2012)]

Application to Eikonal-CDCC : S-matrix $\hat{S} = \hat{S}_{nT}^{\text{eik}} \cdot \hat{S}_{cT}^{\text{E-CDCC}}$

 \Rightarrow 5% error on σ_{bu} of halo nuclei on light and heavy targets

 \Rightarrow ERT factorisation of S-matrix allows to use Hussein-McVoy formalism

Study of the ERT applied to the DEA : Adiabatic treatment of 1 Nucl. *c*-*T* interaction $\text{ERT}^{(c)} \ \widehat{S} = \widehat{S}_{\text{Nucl. }cT}^{\text{eik}} \cdot \widehat{S}_{nT+\text{Coul. }cT}^{\text{DEA}}$

2 *n*-*T* interaction $\text{ERT}^{(n)}$ $\widehat{S} = \widehat{S}_{nT}^{\text{eik}} \cdot \widehat{S}_{cT}^{\text{DEA}}$

 \rightarrow 5% error on σ_{bu} for light and heavy targets <code>[Hebborn and Capel, arXiv :2104.04712]</code>

 \rightarrow Is the ERT accurate for energy and momentum distributions?

Analysis of the ERT for light targets

DEA accurate for these reactions [Goldstein, Baye and Capel, PRC 73, 024602 (2006)] \rightarrow Asymmetric and shifted center caused by projectile's **dynamics** ERT^(c) accurate for both E and k_{\parallel} distributions ERT⁽ⁿ⁾ accurate for E distribution but lacks asymmetry in k_{\parallel} $\Rightarrow n-T$ has to be treated dynamically

 \Rightarrow No simple extension of the DEA to stripping observables

Conclusions and prospects

Knockout reactions : used to probe the s.-p. structure of exotic nuclei

Asymmetry-dependence of the ratio exp-th. not understood

① Which part of the w.f. is probed for halo nuclei (top left)?

• peripherality of knockout reactions

 \Rightarrow No sensitivity to the SF

 $\Rightarrow \sigma_{exp}/\sigma_{th} \sim 1$ probably due to use of realistic ANCs

• Halo-EFT bridges ab initio and reaction theory

⇒ One unique Halo-EFT description of ¹¹Be and ¹⁵C reproduces knockout, transfer and diffractive breakup data

• Sensitivity to **optical potentials** \Rightarrow Need for a more systematic study

Conclusions and prospects

⁽²⁾ How does the sensitivity evolve with the binding energy?

Deeply-bound nucleus $S_n = 10 \text{ MeV}$: σ_{str} dominant

- σ_{ko} is sensitive to the inner part but only above a certain distance
- σ_{ko} does not depend linearly on SF but approximately on $\sqrt{\langle r^2
 angle}$
- \rightarrow Still not clear why there is a strong reduction of exp.-th. ratio

 \Rightarrow Improvements of the few-body model of reaction are still needed

- **③** Study of the extension of the DEA to stripping using ERT
 - Adiabatic treatment of nucl. c-T accurate for σ_{bu} , energy and momentum distributions
 - Adiabatic treatment of n-T accurate for σ_{bu} and energy distributions \rightarrow fails to reproduce the asymmetry of momentum distributions
 - ⇒ No simple generalization of the Hussein-McVoy approach & extension of the DEA to stripping still needed

Thank you for your attention